Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.02732
Cited By
On Lower Bounds for Regret in Reinforcement Learning
9 August 2016
Ian Osband
Benjamin Van Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Lower Bounds for Regret in Reinforcement Learning"
45 / 45 papers shown
Title
Reinforcement Learning from Multi-level and Episodic Human Feedback
Muhammad Qasim Elahi
Somtochukwu Oguchienti
Maheed H. Ahmed
Mahsa Ghasemi
OffRL
57
0
0
20 Apr 2025
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
86
0
0
07 Oct 2024
Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation
Taehyun Cho
Seung Han
Kyungjae Lee
Seokhun Ju
Dohyeong Kim
Jungwoo Lee
72
0
0
31 Jul 2024
Cascading Reinforcement Learning
Yihan Du
R. Srikant
Wei Chen
24
0
0
17 Jan 2024
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
39
20
0
31 Jan 2023
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
57
9
0
25 Nov 2022
Multi-armed Bandit Learning on a Graph
Tianpeng Zhang
Kasper Johansson
Na Li
44
6
0
20 Sep 2022
Making Linear MDPs Practical via Contrastive Representation Learning
Tianjun Zhang
Tongzheng Ren
Mengjiao Yang
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
30
44
0
14 Jul 2022
Provably Efficient Kernelized Q-Learning
Shuang Liu
H. Su
MLT
49
4
0
21 Apr 2022
Branching Reinforcement Learning
Yihan Du
Wei Chen
32
0
0
16 Feb 2022
Continual Learning In Environments With Polynomial Mixing Times
Matthew D Riemer
Sharath Chandra Raparthy
Ignacio Cases
G. Subbaraj
M. P. Touzel
Irina Rish
CLL
46
8
0
13 Dec 2021
A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning
Tongzheng Ren
Tianjun Zhang
Csaba Szepesvári
Bo Dai
39
20
0
22 Nov 2021
Settling the Horizon-Dependence of Sample Complexity in Reinforcement Learning
Yuanzhi Li
Ruosong Wang
Lin F. Yang
44
20
0
01 Nov 2021
Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs
Han Zhong
Zhuoran Yang
Zhaoran Wang
Csaba Szepesvári
66
21
0
18 Oct 2021
Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning
Gen Li
Laixi Shi
Yuxin Chen
Yuejie Chi
OffRL
49
51
0
09 Oct 2021
Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments
Amin Rakhsha
Xuezhou Zhang
Xiaojin Zhu
Adish Singla
AAML
OffRL
44
37
0
16 Feb 2021
Robust Policy Gradient against Strong Data Corruption
Xuezhou Zhang
Yiding Chen
Xiaojin Zhu
Wen Sun
AAML
57
38
0
11 Feb 2021
Learning Adversarial Markov Decision Processes with Delayed Feedback
Tal Lancewicki
Aviv A. Rosenberg
Yishay Mansour
43
32
0
29 Dec 2020
A Sharp Analysis of Model-based Reinforcement Learning with Self-Play
Qinghua Liu
Tiancheng Yu
Yu Bai
Chi Jin
41
121
0
04 Oct 2020
Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs
Jiafan He
Dongruo Zhou
Quanquan Gu
40
37
0
01 Oct 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
57
104
0
28 Sep 2020
A Unifying View of Optimism in Episodic Reinforcement Learning
Gergely Neu
Ciara Pike-Burke
22
66
0
03 Jul 2020
Adaptive Discretization for Model-Based Reinforcement Learning
Sean R. Sinclair
Tianyu Wang
Gauri Jain
Siddhartha Banerjee
Chao Yu
OffRL
24
21
0
01 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
35
134
0
23 Jun 2020
Near-Optimal Reinforcement Learning with Self-Play
Yunru Bai
Chi Jin
Tiancheng Yu
29
130
0
22 Jun 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
48
59
0
16 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
62
300
0
01 Jun 2020
Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension
Ruosong Wang
Ruslan Salakhutdinov
Lin F. Yang
30
55
0
21 May 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
46
125
0
17 Feb 2020
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai
Chi Jin
SSL
32
149
0
10 Feb 2020
Making Sense of Reinforcement Learning and Probabilistic Inference
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
37
48
0
03 Jan 2020
Influence-Based Multi-Agent Exploration
Tonghan Wang
Jianhao Wang
Yi Wu
Chongjie Zhang
26
138
0
12 Oct 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
57
546
0
11 Jul 2019
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies
Yonathan Efroni
Nadav Merlis
Mohammad Ghavamzadeh
Shie Mannor
OffRL
29
68
0
27 May 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
26
283
0
24 May 2019
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
Andrea Zanette
Emma Brunskill
OffRL
56
273
0
01 Jan 2019
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
65
51
0
15 Oct 2018
Exploration in Structured Reinforcement Learning
Jungseul Ok
Alexandre Proutiere
Damianos Tranos
40
62
0
03 Jun 2018
Variance Reduction Methods for Sublinear Reinforcement Learning
Sham Kakade
Mengdi Wang
Lin F. Yang
21
32
0
26 Feb 2018
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning
Ronan Fruit
Matteo Pirotta
A. Lazaric
R. Ortner
29
115
0
12 Feb 2018
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
41
189
0
15 Sep 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
53
300
0
22 Mar 2017
Minimax Regret Bounds for Reinforcement Learning
M. G. Azar
Ian Osband
Rémi Munos
36
766
0
16 Mar 2017
Stochastic Primal-Dual Methods and Sample Complexity of Reinforcement Learning
Yichen Chen
Mengdi Wang
37
64
0
08 Dec 2016
Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
Ian Osband
Benjamin Van Roy
BDL
29
255
0
01 Jul 2016
1