ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.01745
  4. Cited By
Play and Learn: Using Video Games to Train Computer Vision Models

Play and Learn: Using Video Games to Train Computer Vision Models

5 August 2016
Alireza Shafaei
James J. Little
Mark W. Schmidt
ArXivPDFHTML

Papers citing "Play and Learn: Using Video Games to Train Computer Vision Models"

18 / 18 papers shown
Title
CAD2Render: A Modular Toolkit for GPU-accelerated Photorealistic
  Synthetic Data Generation for the Manufacturing Industry
CAD2Render: A Modular Toolkit for GPU-accelerated Photorealistic Synthetic Data Generation for the Manufacturing Industry
Steven Moonen
Bram Vanherle
Joris de Hoog
T. Bourgana
A. Bey-Temsamani
Nick Michiels
19
14
0
25 Nov 2022
MC-hands-1M: A glove-wearing hand dataset for pose estimation
MC-hands-1M: A glove-wearing hand dataset for pose estimation
Prodromos Boutis
Zisis Batzos
Konstantinos Konstantoudakis
A. Dimou
P. Daras
3DH
18
0
0
19 Oct 2022
Image Segmentation to Identify Safe Landing Zones for Unmanned Aerial
  Vehicles
Image Segmentation to Identify Safe Landing Zones for Unmanned Aerial Vehicles
Joe Kinahan
Alan F. Smeaton
19
8
0
29 Nov 2021
The Synthinel-1 dataset: a collection of high resolution synthetic
  overhead imagery for building segmentation
The Synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation
Fanjie Kong
Bohao Huang
Kyle Bradbury
Jordan M. Malof
28
38
0
15 Jan 2020
Generating Human Action Videos by Coupling 3D Game Engines and
  Probabilistic Graphical Models
Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models
César Roberto de Souza
Adrien Gaidon
Yohann Cabon
Naila Murray
A. Peña
39
14
0
12 Oct 2019
Leveraging synthetic imagery for collision-at-sea avoidance
Leveraging synthetic imagery for collision-at-sea avoidance
C. Ward
Josh Harguess
Alexander G. Corelli
32
5
0
13 May 2019
Virtual Training for a Real Application: Accurate Object-Robot Relative
  Localization without Calibration
Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration
Vianney Loing
Renaud Marlet
Mathieu Aubry
29
23
0
07 Feb 2019
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in
  Semantic Segmentation
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation
Tuan-Hung Vu
Himalaya Jain
Max Bucher
Matthieu Cord
P. Pérez
40
1,280
0
30 Nov 2018
Sports Camera Calibration via Synthetic Data
Sports Camera Calibration via Synthetic Data
Jianhui Chen
James J. Little
25
74
0
25 Oct 2018
CEREALS - Cost-Effective REgion-based Active Learning for Semantic
  Segmentation
CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation
Radek Mackowiak
Philip Lenz
Omair Ghori
Ferran Diego
O. Lange
Carsten Rother
37
108
0
23 Oct 2018
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep
  Learning in Self Driving Cars
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars
Mark Martinez
Chawin Sitawarin
Kevin Finch
Lennart Meincke
Alex Yablonski
A. Kornhauser
10
77
0
04 Dec 2017
Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D
  Scenes
Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D Scenes
Kyle Genova
Manolis Savva
Angel X. Chang
Thomas Funkhouser
54
11
0
07 Apr 2017
Domain Adaptation for Visual Applications: A Comprehensive Survey
Domain Adaptation for Visual Applications: A Comprehensive Survey
G. Csurka
OOD
25
503
0
17 Feb 2017
From Virtual to Real World Visual Perception using Domain Adaptation --
  The DPM as Example
From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example
Antonio M. López
Jiaolong Xu
J. L. Gómez
David Vazquez
G. Ros
22
11
0
29 Dec 2016
Learning from Simulated and Unsupervised Images through Adversarial
  Training
Learning from Simulated and Unsupervised Images through Adversarial Training
A. Shrivastava
Tomas Pfister
Oncel Tuzel
J. Susskind
Wenda Wang
Russ Webb
GAN
25
1,797
0
22 Dec 2016
Automatic Model Based Dataset Generation for Fast and Accurate Crop and
  Weeds Detection
Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
M. D. Cicco
Ciro Potena
Giorgio Grisetti
Alberto Pretto
26
124
0
09 Dec 2016
TorontoCity: Seeing the World with a Million Eyes
TorontoCity: Seeing the World with a Million Eyes
Shenlong Wang
Min Bai
Gellért Máttyus
Hang Chu
Wenjie Luo
Binh Yang
Justin Liang
Joel Cheverie
Sanja Fidler
R. Urtasun
3DV
ViT
16
178
0
01 Dec 2016
MatConvNet - Convolutional Neural Networks for MATLAB
MatConvNet - Convolutional Neural Networks for MATLAB
Andrea Vedaldi
Karel Lenc
183
2,946
0
15 Dec 2014
1