ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.00624
  4. Cited By
Oracle Inequalities for High-dimensional Prediction

Oracle Inequalities for High-dimensional Prediction

1 August 2016
Johannes Lederer
Lu Yu
Irina Gaynanova
ArXivPDFHTML

Papers citing "Oracle Inequalities for High-dimensional Prediction"

25 / 25 papers shown
Title
On the prediction loss of the lasso in the partially labeled setting
On the prediction loss of the lasso in the partially labeled setting
Pierre C. Bellec
A. Dalalyan
Edwin Grappin
Q. Paris
56
31
0
20 Jun 2016
Slope meets Lasso: improved oracle bounds and optimality
Slope meets Lasso: improved oracle bounds and optimality
Pierre C. Bellec
Guillaume Lecué
Alexandre B. Tsybakov
307
190
0
27 May 2016
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
420
146
0
29 Mar 2015
Optimal Two-Step Prediction in Regression
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
96
19
0
18 Oct 2014
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality
  Guarantees
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees
M. Chichignoud
Johannes Lederer
Martin J. Wainwright
62
13
0
01 Oct 2014
On higher order isotropy conditions and lower bounds for sparse
  quadratic forms
On higher order isotropy conditions and lower bounds for sparse quadratic forms
Sara van de Geer
Alan Muro
139
29
0
23 May 2014
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High
  Dimensions With the TREX
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX
Johannes Lederer
Christian L. Müller
70
55
0
02 Apr 2014
On the Prediction Performance of the Lasso
On the Prediction Performance of the Lasso
A. Dalalyan
Mohamed Hebiri
Johannes Lederer
168
167
0
07 Feb 2014
A new perspective on least squares under convex constraint
A new perspective on least squares under convex constraint
S. Chatterjee
112
117
0
04 Feb 2014
Adaptive piecewise polynomial estimation via trend filtering
Adaptive piecewise polynomial estimation via trend filtering
Robert Tibshirani
77
396
0
10 Apr 2013
Assumptionless consistency of the Lasso
Assumptionless consistency of the Lasso
S. Chatterjee
62
52
0
23 Mar 2013
The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms
The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms
F. Bunea
Johannes Lederer
Yiyuan She
138
109
0
01 Feb 2013
A lasso for hierarchical interactions
A lasso for hierarchical interactions
Jacob Bien
Jonathan E. Taylor
Robert Tibshirani
194
485
0
22 May 2012
How Correlations Influence Lasso Prediction
How Correlations Influence Lasso Prediction
Mohamed Hebiri
Johannes Lederer
112
101
0
07 Apr 2012
Sparse Matrix Inversion with Scaled Lasso
Sparse Matrix Inversion with Scaled Lasso
Tingni Sun
Cun-Hui Zhang
132
170
0
13 Feb 2012
Statistical significance in high-dimensional linear models
Statistical significance in high-dimensional linear models
Peter Buhlmann
195
229
0
07 Feb 2012
High-dimensional regression with unknown variance
High-dimensional regression with unknown variance
Christophe Giraud
S. Huet
Nicolas Verzélen
101
63
0
26 Sep 2011
Scaled Sparse Linear Regression
Scaled Sparse Linear Regression
Tingni Sun
Cun-Hui Zhang
182
507
0
24 Apr 2011
Nuclear norm penalization and optimal rates for noisy low rank matrix
  completion
Nuclear norm penalization and optimal rates for noisy low rank matrix completion
V. Koltchinskii
Alexandre B. Tsybakov
Karim Lounici
223
663
0
29 Nov 2010
Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic
  Programming
Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming
A. Belloni
Victor Chernozhukov
Lie Wang
170
674
0
28 Sep 2010
Exponential Screening and optimal rates of sparse estimation
Exponential Screening and optimal rates of sparse estimation
Philippe Rigollet
Alexandre B. Tsybakov
197
241
0
12 Mar 2010
On the conditions used to prove oracle results for the Lasso
On the conditions used to prove oracle results for the Lasso
Sara van de Geer
Peter Buhlmann
272
732
0
05 Oct 2009
Sparse recovery in convex hulls via entropy penalization
Sparse recovery in convex hulls via entropy penalization
V. Koltchinskii
128
32
0
13 May 2009
Simultaneous analysis of Lasso and Dantzig selector
Simultaneous analysis of Lasso and Dantzig selector
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
535
2,530
0
07 Jan 2008
Sparsity oracle inequalities for the Lasso
Sparsity oracle inequalities for the Lasso
F. Bunea
Alexandre B. Tsybakov
M. Wegkamp
557
472
0
23 May 2007
1