ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.08414
  4. Cited By
SEMBED: Semantic Embedding of Egocentric Action Videos

SEMBED: Semantic Embedding of Egocentric Action Videos

28 July 2016
Michael Wray
Davide Moltisanti
W. Mayol-Cuevas
Dima Damen
ArXivPDFHTML

Papers citing "SEMBED: Semantic Embedding of Egocentric Action Videos"

3 / 3 papers shown
Title
An Action Is Worth Multiple Words: Handling Ambiguity in Action
  Recognition
An Action Is Worth Multiple Words: Handling Ambiguity in Action Recognition
Kiyoon Kim
Davide Moltisanti
Oisin Mac Aodha
Laura Sevilla-Lara
16
0
0
10 Oct 2022
First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose
  Annotations
First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations
Guillermo Garcia-Hernando
Shanxin Yuan
Seungryul Baek
Tae-Kyun Kim
EgoV
30
478
0
08 Apr 2017
Trespassing the Boundaries: Labeling Temporal Bounds for Object
  Interactions in Egocentric Video
Trespassing the Boundaries: Labeling Temporal Bounds for Object Interactions in Egocentric Video
Davide Moltisanti
Michael Wray
W. Mayol-Cuevas
Dima Damen
EgoV
19
31
0
27 Mar 2017
1