Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.05113
Cited By
On the Effectiveness of Defensive Distillation
18 July 2016
Nicolas Papernot
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Effectiveness of Defensive Distillation"
13 / 13 papers shown
Title
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
Tal Alter
Raz Lapid
Moshe Sipper
AAML
62
6
0
25 Aug 2024
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
28
71
0
04 Jul 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
38
134
0
14 Feb 2021
DiPSeN: Differentially Private Self-normalizing Neural Networks For Adversarial Robustness in Federated Learning
Olakunle Ibitoye
M. O. Shafiq
Ashraf Matrawy
FedML
28
18
0
08 Jan 2021
Ensemble Generative Cleaning with Feedback Loops for Defending Adversarial Attacks
Jianhe Yuan
Zhihai He
AAML
32
22
0
23 Apr 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
36
38
0
26 Feb 2020
Adversarial Robustness via Label-Smoothing
Morgane Goibert
Elvis Dohmatob
AAML
10
18
0
27 Jun 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
31
63
0
28 May 2019
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
Jan Svoboda
Jonathan Masci
Federico Monti
M. Bronstein
Leonidas J. Guibas
AAML
GNN
33
41
0
31 May 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
33
545
0
05 Mar 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
89
11,884
0
19 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
86
8,465
0
16 Aug 2016
1