ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.01985
  4. Cited By
A Common Derivation for Markov Chain Monte Carlo Algorithms with
  Tractable and Intractable Targets

A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets

7 July 2016
K. Tran
    BDL
ArXivPDFHTML

Papers citing "A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets"

8 / 8 papers shown
Title
Pseudo-Marginal Slice Sampling
Pseudo-Marginal Slice Sampling
Iain Murray
Matthew M. Graham
57
37
0
10 Oct 2015
Particle Metropolis-adjusted Langevin algorithms
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
54
24
0
23 Dec 2014
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
72
47
0
04 Nov 2013
On the efficiency of pseudo-marginal random walk Metropolis algorithms
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
55
190
0
27 Sep 2013
Particle approximations of the score and observed information matrix for
  parameter estimation in state space models with linear computational cost
Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
85
45
0
04 Jun 2013
Parallel MCMC with Generalized Elliptical Slice Sampling
Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara
Iain Murray
Ryan P. Adams
78
81
0
28 Oct 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
147
4,275
0
18 Nov 2011
SMC^2: an efficient algorithm for sequential analysis of state-space
  models
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
82
356
0
07 Jan 2011
1