ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.01904
  4. Cited By
Bayesian inverse problems with $l_1$ priors: a Randomize-then-Optimize
  approach

Bayesian inverse problems with l1l_1l1​ priors: a Randomize-then-Optimize approach

7 July 2016
Zheng Wang
Johnathan M. Bardsley
A. Solonen
Tiangang Cui
Youssef M. Marzouk
ArXivPDFHTML

Papers citing "Bayesian inverse problems with $l_1$ priors: a Randomize-then-Optimize approach"

5 / 5 papers shown
Title
Scalable optimization-based sampling on function space
Scalable optimization-based sampling on function space
Johnathan M. Bardsley
Tiangang Cui
Youssef Marzouk
Zheng Wang
27
17
0
03 Mar 2019
Dimension-Robust MCMC in Bayesian Inverse Problems
Dimension-Robust MCMC in Bayesian Inverse Problems
Victor Chen
Matthew M. Dunlop
O. Papaspiliopoulos
Andrew M. Stuart
22
36
0
09 Mar 2018
Variable transformation to obtain geometric ergodicity in the
  random-walk Metropolis algorithm
Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
Leif Johnson
C. Geyer
71
51
0
27 Feb 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in
  high-dimensional inverse problems using L1-type priors
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors
F. Lucka
38
30
0
01 Jun 2012
1