ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.01231
  4. Cited By
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

5 July 2016
Tianlin Li
Shiqian Ma
D. Goldfarb
Wei Liu
ArXivPDFHTML

Papers citing "Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization"

17 / 17 papers shown
Title
Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization
Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization
Aditya Ranganath
Mukesh Singhal
Roummel Marcia
ODL
65
0
0
17 Feb 2025
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural
  Policy Gradient Methods
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
42
102
0
15 Nov 2022
SP2: A Second Order Stochastic Polyak Method
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
23
13
0
17 Jul 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
52
5
0
06 Jun 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized
  Learning: Part I
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
24
14
0
19 Jan 2022
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
24
19
0
04 Oct 2021
slimTrain -- A Stochastic Approximation Method for Training Separable
  Deep Neural Networks
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
47
6
0
28 Sep 2021
Differentially private inference via noisy optimization
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
21
178
0
01 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit
  Layers
Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit Layers
Philipp Geiger
C. Straehle
AI4CE
33
26
0
17 Aug 2020
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive
  Step Size
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
20
3
0
01 Dec 2019
Combining Stochastic Adaptive Cubic Regularization with Negative
  Curvature for Nonconvex Optimization
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
21
15
0
27 Jun 2019
A Linearly-Convergent Stochastic L-BFGS Algorithm
A Linearly-Convergent Stochastic L-BFGS Algorithm
Philipp Moritz
Robert Nishihara
Michael I. Jordan
ODL
29
232
0
09 Aug 2015
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1