Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.01231
Cited By
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
5 July 2016
Tianlin Li
Shiqian Ma
D. Goldfarb
Wei Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization"
17 / 17 papers shown
Title
Symmetric Rank-One Quasi-Newton Methods for Deep Learning Using Cubic Regularization
Aditya Ranganath
Mukesh Singhal
Roummel Marcia
ODL
65
0
0
17 Feb 2025
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
42
102
0
15 Nov 2022
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
23
13
0
17 Jul 2022
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
52
5
0
06 Jun 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
24
14
0
19 Jan 2022
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
24
19
0
04 Oct 2021
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
47
6
0
28 Sep 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
21
178
0
01 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit Layers
Philipp Geiger
C. Straehle
AI4CE
33
26
0
17 Aug 2020
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
20
3
0
01 Dec 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
21
15
0
27 Jun 2019
A Linearly-Convergent Stochastic L-BFGS Algorithm
Philipp Moritz
Robert Nishihara
Michael I. Jordan
ODL
29
232
0
09 Aug 2015
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1