ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.00971
  4. Cited By
Can we unify monocular detectors for autonomous driving by using the
  pixel-wise semantic segmentation of CNNs?

Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs?

4 July 2016
Eduardo Romera
L. Bergasa
R. Arroyo
    SSeg
ArXivPDFHTML

Papers citing "Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs?"

7 / 7 papers shown
Title
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
322
37,704
0
20 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
691
11,540
0
06 Apr 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust
  Semantic Pixel-Wise Labelling
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
Vijay Badrinarayanan
Ankur Handa
R. Cipolla
SSeg
215
792
0
27 May 2015
Conditional Random Fields as Recurrent Neural Networks
Conditional Random Fields as Recurrent Neural Networks
Shuai Zheng
Sadeep Jayasumana
Bernardino Romera-Paredes
Vibhav Vineet
Zhizhong Su
Dalong Du
Chang Huang
Philip Torr
SSeg
170
2,533
0
11 Feb 2015
Semantic Image Segmentation with Deep Convolutional Nets and Fully
  Connected CRFs
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
110
4,882
0
22 Dec 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
195
14,703
0
20 Jun 2014
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
224
26,122
0
11 Nov 2013
1