ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.05487
  4. Cited By
YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN
  Acceleration

YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN Acceleration

17 June 2016
Renzo Andri
Lukas Cavigelli
D. Rossi
Luca Benini
ArXivPDFHTML

Papers citing "YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN Acceleration"

49 / 49 papers shown
Title
RedBit: An End-to-End Flexible Framework for Evaluating the Accuracy of
  Quantized CNNs
RedBit: An End-to-End Flexible Framework for Evaluating the Accuracy of Quantized CNNs
A. M. Ribeiro-dos-Santos
João Dinis Ferreira
O. Mutlu
G. Falcão
MQ
21
1
0
15 Jan 2023
Enable Deep Learning on Mobile Devices: Methods, Systems, and
  Applications
Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications
Han Cai
Ji Lin
Yujun Lin
Zhijian Liu
Haotian Tang
Hanrui Wang
Ligeng Zhu
Song Han
24
107
0
25 Apr 2022
Hardware Approximate Techniques for Deep Neural Network Accelerators: A
  Survey
Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey
Giorgos Armeniakos
Georgios Zervakis
Dimitrios Soudris
J. Henkel
211
93
0
16 Mar 2022
R2F: A Remote Retraining Framework for AIoT Processors with Computing
  Errors
R2F: A Remote Retraining Framework for AIoT Processors with Computing Errors
Dawen Xu
Meng He
Cheng Liu
Ying Wang
Long Cheng
Huawei Li
Xiaowei Li
Kwang-Ting Cheng
9
9
0
07 Jul 2021
Measuring what Really Matters: Optimizing Neural Networks for TinyML
Measuring what Really Matters: Optimizing Neural Networks for TinyML
Lennart Heim
Andreas Biri
Zhongnan Qu
Lothar Thiele
46
30
0
21 Apr 2021
Hardware and Software Optimizations for Accelerating Deep Neural
  Networks: Survey of Current Trends, Challenges, and the Road Ahead
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Muhammad Shafique
BDL
56
140
0
21 Dec 2020
Running Neural Networks on the NIC
Running Neural Networks on the NIC
G. Siracusano
Salvator Galea
D. Sanvito
Mohammad Malekzadeh
Hamed Haddadi
G. Antichi
R. Bifulco
11
25
0
04 Sep 2020
Training Deep Neural Networks with Constrained Learning Parameters
Training Deep Neural Networks with Constrained Learning Parameters
Prasanna Date
C. Carothers
J. Mitchell
James A. Hendler
M. Magdon-Ismail
18
1
0
01 Sep 2020
Automated Design Space Exploration for optimised Deployment of DNN on
  Arm Cortex-A CPUs
Automated Design Space Exploration for optimised Deployment of DNN on Arm Cortex-A CPUs
Miguel de Prado
Andrew Mundy
Rabia Saeed
Maurizo Denna
Nuria Pazos
Luca Benini
19
11
0
09 Jun 2020
Quantized Neural Networks: Characterization and Holistic Optimization
Quantized Neural Networks: Characterization and Holistic Optimization
Yoonho Boo
Sungho Shin
Wonyong Sung
MQ
40
8
0
31 May 2020
An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for
  Neural Network Acceleration
An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration
Behzad Salami
Erhan Baturay Onural
Ismail Emir Yüksel
Fahrettin Koc
Oguz Ergin
A. Cristal
O. Unsal
H. Sarbazi-Azad
O. Mutlu
27
45
0
04 May 2020
A scalable and efficient convolutional neural network accelerator using
  HLS for a System on Chip design
A scalable and efficient convolutional neural network accelerator using HLS for a System on Chip design
K. Bjerge
J. Schougaard
Daniel Ejnar Larsen
11
1
0
27 Apr 2020
Improving Efficiency in Neural Network Accelerator Using Operands
  Hamming Distance optimization
Improving Efficiency in Neural Network Accelerator Using Operands Hamming Distance optimization
Meng Li
Yilei Li
P. Chuang
Liangzhen Lai
Vikas Chandra
9
3
0
13 Feb 2020
TentacleNet: A Pseudo-Ensemble Template for Accurate Binary
  Convolutional Neural Networks
TentacleNet: A Pseudo-Ensemble Template for Accurate Binary Convolutional Neural Networks
Luca Mocerino
A. Calimera
MQ
8
4
0
20 Dec 2019
FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network
  Inference at the Edge of the Internet of Things
FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network Inference at the Edge of the Internet of Things
Xiaying Wang
Michele Magno
Lukas Cavigelli
Luca Benini
19
116
0
08 Nov 2019
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference
  and Training Accelerators
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators
Lukas Cavigelli
Georg Rutishauser
Luca Benini
MQ
6
34
0
30 Aug 2019
Distributed Deep Convolutional Neural Networks for the
  Internet-of-Things
Distributed Deep Convolutional Neural Networks for the Internet-of-Things
Simone Disabato
M. Roveri
Cesare Alippi
16
47
0
02 Aug 2019
Processing-In-Memory Acceleration of Convolutional Neural Networks for
  Energy-Efficiency, and Power-Intermittency Resilience
Processing-In-Memory Acceleration of Convolutional Neural Networks for Energy-Efficiency, and Power-Intermittency Resilience
A. Roohi
Shaahin Angizi
Deliang Fan
R. Demara
11
15
0
16 Apr 2019
Quantized Guided Pruning for Efficient Hardware Implementations of
  Convolutional Neural Networks
Quantized Guided Pruning for Efficient Hardware Implementations of Convolutional Neural Networks
G. B. Hacene
Vincent Gripon
M. Arzel
Nicolas Farrugia
Yoshua Bengio
MQ
6
14
0
29 Dec 2018
Distill-Net: Application-Specific Distillation of Deep Convolutional
  Neural Networks for Resource-Constrained IoT Platforms
Distill-Net: Application-Specific Distillation of Deep Convolutional Neural Networks for Resource-Constrained IoT Platforms
Mohammad Motamedi
Felix Portillo
Daniel D. Fong
S. Ghiasi
23
3
0
16 Dec 2018
Towards Fast and Energy-Efficient Binarized Neural Network Inference on
  FPGA
Towards Fast and Energy-Efficient Binarized Neural Network Inference on FPGA
Cheng Fu
Shilin Zhu
Hao Su
Ching-En Lee
Jishen Zhao
MQ
15
31
0
04 Oct 2018
Extended Bit-Plane Compression for Convolutional Neural Network
  Accelerators
Extended Bit-Plane Compression for Convolutional Neural Network Accelerators
Lukas Cavigelli
Luca Benini
19
20
0
01 Oct 2018
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional
  Network Inference on Video Streams
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Network Inference on Video Streams
Lukas Cavigelli
Luca Benini
19
26
0
15 Aug 2018
Energy-based Tuning of Convolutional Neural Networks on Multi-GPUs
Energy-based Tuning of Convolutional Neural Networks on Multi-GPUs
F. M. Castro
Nicolás Guil Mata
M. Marín-Jiménez
Jesús Pérez Serrano
M. Ujaldón
9
19
0
01 Aug 2018
PCNNA: A Photonic Convolutional Neural Network Accelerator
PCNNA: A Photonic Convolutional Neural Network Accelerator
A. Mehrabian
Yousra Alkabani
V. Sorger
T. El-Ghazawi
8
64
0
23 Jul 2018
NullaNet: Training Deep Neural Networks for Reduced-Memory-Access
  Inference
NullaNet: Training Deep Neural Networks for Reduced-Memory-Access Inference
M. Nazemi
Ghasem Pasandi
Massoud Pedram
15
20
0
23 Jul 2018
Exploration of Low Numeric Precision Deep Learning Inference Using Intel
  FPGAs
Exploration of Low Numeric Precision Deep Learning Inference Using Intel FPGAs
Philip Colangelo
Nasibeh Nasiri
Asit K. Mishra
Eriko Nurvitadhi
M. Margala
Kevin Nealis
MQ
19
1
0
12 Jun 2018
Accelerating CNN inference on FPGAs: A Survey
Accelerating CNN inference on FPGAs: A Survey
K. Abdelouahab
Maxime Pelcat
Jocelyn Serot
F. Berry
AI4CE
22
147
0
26 May 2018
SIPs: Succinct Interest Points from Unsupervised Inlierness Probability
  Learning
SIPs: Succinct Interest Points from Unsupervised Inlierness Probability Learning
Titus Cieslewski
Konstantinos G. Derpanis
Davide Scaramuzza
20
7
0
03 May 2018
Universal and Succinct Source Coding of Deep Neural Networks
Universal and Succinct Source Coding of Deep Neural Networks
Sourya Basu
L. Varshney
BDL
12
3
0
09 Apr 2018
MT-Spike: A Multilayer Time-based Spiking Neuromorphic Architecture with
  Temporal Error Backpropagation
MT-Spike: A Multilayer Time-based Spiking Neuromorphic Architecture with Temporal Error Backpropagation
Tao Liu
Zihao Liu
Fuhong Lin
Yier Jin
Gang Quan
Wujie Wen
21
32
0
14 Mar 2018
PT-Spike: A Precise-Time-Dependent Single Spike Neuromorphic
  Architecture with Efficient Supervised Learning
PT-Spike: A Precise-Time-Dependent Single Spike Neuromorphic Architecture with Efficient Supervised Learning
Tao Liu
Lei Jiang
Yier Jin
Gang Quan
Wujie Wen
11
11
0
14 Mar 2018
CSRNet: Dilated Convolutional Neural Networks for Understanding the
  Highly Congested Scenes
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
Yuhong Li
Xiaofan Zhang
Deming Chen
60
1,321
0
27 Feb 2018
An Area and Energy Efficient Design of Domain-Wall Memory-Based Deep
  Convolutional Neural Networks using Stochastic Computing
An Area and Energy Efficient Design of Domain-Wall Memory-Based Deep Convolutional Neural Networks using Stochastic Computing
Xiaolong Ma
Yipeng Zhang
Geng Yuan
Ao Ren
Zhe Li
Jie Han
J. Hu
Yanzhi Wang
14
17
0
03 Feb 2018
Bit Fusion: Bit-Level Dynamically Composable Architecture for
  Accelerating Deep Neural Networks
Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks
Hardik Sharma
Jongse Park
Naveen Suda
Liangzhen Lai
Benson Chau
J. Kim
Vikas Chandra
H. Esmaeilzadeh
MQ
21
486
0
05 Dec 2017
LightNN: Filling the Gap between Conventional Deep Neural Networks and
  Binarized Networks
LightNN: Filling the Gap between Conventional Deep Neural Networks and Binarized Networks
Ruizhou Ding
Z. Liu
Rongye Shi
Diana Marculescu
R. D. Blanton
MQ
16
37
0
02 Dec 2017
Tactics to Directly Map CNN graphs on Embedded FPGAs
Tactics to Directly Map CNN graphs on Embedded FPGAs
K. Abdelouahab
Maxime Pelcat
Jocelyn Sérot
C. Bourrasset
F. Berry
Jocelyn Serot
8
61
0
20 Nov 2017
ReBNet: Residual Binarized Neural Network
ReBNet: Residual Binarized Neural Network
M. Ghasemzadeh
Mohammad Samragh
F. Koushanfar
MQ
22
4
0
03 Nov 2017
Balanced Quantization: An Effective and Efficient Approach to Quantized
  Neural Networks
Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks
Shuchang Zhou
Yuzhi Wang
He Wen
Qinyao He
Yuheng Zou
MQ
22
110
0
22 Jun 2017
BMXNet: An Open-Source Binary Neural Network Implementation Based on
  MXNet
BMXNet: An Open-Source Binary Neural Network Implementation Based on MXNet
Haojin Yang
Martin Fritzsche
Christian Bartz
Christoph Meinel
MQ
11
61
0
27 May 2017
CBinfer: Change-Based Inference for Convolutional Neural Networks on
  Video Data
CBinfer: Change-Based Inference for Convolutional Neural Networks on Video Data
Lukas Cavigelli
Philippe Degen
Luca Benini
BDL
19
51
0
14 Apr 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML
3DV
41
2,991
0
27 Mar 2017
Scaling Binarized Neural Networks on Reconfigurable Logic
Scaling Binarized Neural Networks on Reconfigurable Logic
Nicholas J. Fraser
Yaman Umuroglu
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
K. Vissers
MQ
12
57
0
12 Jan 2017
Hardware for Machine Learning: Challenges and Opportunities
Hardware for Machine Learning: Challenges and Opportunities
Vivienne Sze
Yu-hsin Chen
Joel S. Einer
Amr Suleiman
Zhengdong Zhang
19
77
0
22 Dec 2016
An IoT Endpoint System-on-Chip for Secure and Energy-Efficient
  Near-Sensor Analytics
An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics
Francesco Conti
R. Schilling
Pasquale Davide Schiavone
A. Pullini
D. Rossi
...
Michael Gautschi
Igor Loi
Germain Haugou
Stefan Mangard
Luca Benini
13
117
0
18 Dec 2016
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
Yaman Umuroglu
Nicholas J. Fraser
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
K. Vissers
MQ
33
977
0
01 Dec 2016
SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using
  Stochastic Computing
SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
Ao Ren
Ji Li
Zhe Li
Caiwen Ding
Xuehai Qian
Qinru Qiu
Bo Yuan
Yanzhi Wang
16
194
0
18 Nov 2016
Computationally Efficient Target Classification in Multispectral Image
  Data with Deep Neural Networks
Computationally Efficient Target Classification in Multispectral Image Data with Deep Neural Networks
Lukas Cavigelli
Dominic Bernath
Michele Magno
Luca Benini
22
21
0
09 Nov 2016
Quantized Neural Networks: Training Neural Networks with Low Precision
  Weights and Activations
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El-Yaniv
Yoshua Bengio
MQ
37
1,842
0
22 Sep 2016
1