ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.05313
  4. Cited By
Unsupervised Risk Estimation Using Only Conditional Independence
  Structure

Unsupervised Risk Estimation Using Only Conditional Independence Structure

16 June 2016
Jacob Steinhardt
Percy Liang
ArXiv (abs)PDFHTML

Papers citing "Unsupervised Risk Estimation Using Only Conditional Independence Structure"

12 / 12 papers shown
Title
Unanimous Prediction for 100% Precision with Application to Learning
  Semantic Mappings
Unanimous Prediction for 100% Precision with Application to Learning Semantic Mappings
Fereshte Khani
Martin Rinard
Percy Liang
AAML
35
26
0
20 Jun 2016
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CMLOODBDL
282
730
0
12 May 2016
Unsupervised Ensemble Learning with Dependent Classifiers
Unsupervised Ensemble Learning with Dependent Classifiers
Ariel Jaffe
Ethan Fetaya
B. Nadler
Tingting Jiang
Y. Kluger
UQCV
46
45
0
20 Oct 2015
Tensor Factorization via Matrix Factorization
Tensor Factorization via Matrix Factorization
Volodymyr Kuleshov
Arun Tejasvi Chaganty
Percy Liang
105
85
0
29 Jan 2015
Estimating the Accuracies of Multiple Classifiers Without Labeled Data
Estimating the Accuracies of Multiple Classifiers Without Labeled Data
Ariel Jaffe
B. Nadler
Y. Kluger
68
68
0
29 Jul 2014
Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing
Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing
Yuchen Zhang
Xi Chen
Dengyong Zhou
Michael I. Jordan
FedML
119
386
0
15 Jun 2014
Spectral Experts for Estimating Mixtures of Linear Regressions
Spectral Experts for Estimating Mixtures of Linear Regressions
Arun Tejasvi Chaganty
Percy Liang
122
142
0
17 Jun 2013
Tensor decompositions for learning latent variable models
Tensor decompositions for learning latent variable models
Anima Anandkumar
Rong Ge
Daniel J. Hsu
Sham Kakade
Matus Telgarsky
440
1,145
0
29 Oct 2012
Identifiability and Unmixing of Latent Parse Trees
Identifiability and Unmixing of Latent Parse Trees
Daniel J. Hsu
Sham Kakade
Percy Liang
147
38
0
14 Jun 2012
A Method of Moments for Mixture Models and Hidden Markov Models
A Method of Moments for Mixture Models and Hidden Markov Models
Anima Anandkumar
Daniel J. Hsu
Sham Kakade
188
344
0
03 Mar 2012
Domain Adaptation: Learning Bounds and Algorithms
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
298
799
0
19 Feb 2009
A tutorial on conformal prediction
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
452
1,144
0
21 Jun 2007
1