ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.03358
  4. Cited By
Extended Gauss-Newton and ADMM-Gauss-Newton Algorithms for Low-Rank
  Matrix Optimization

Extended Gauss-Newton and ADMM-Gauss-Newton Algorithms for Low-Rank Matrix Optimization

10 June 2016
Quoc Tran-Dinh
ArXivPDFHTML

Papers citing "Extended Gauss-Newton and ADMM-Gauss-Newton Algorithms for Low-Rank Matrix Optimization"

2 / 2 papers shown
Title
Recursive Importance Sketching for Rank Constrained Least Squares:
  Algorithms and High-order Convergence
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Decomposition into Low-rank plus Additive Matrices for
  Background/Foreground Separation: A Review for a Comparative Evaluation with
  a Large-Scale Dataset
Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset
T. Bouwmans
A. Sobral
S. Javed
Soon Ki Jung
E. Zahzah
39
330
0
04 Nov 2015
1