ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.09522
  4. Cited By
Kernel Mean Embedding of Distributions: A Review and Beyond
v1v2v3v4 (latest)

Kernel Mean Embedding of Distributions: A Review and Beyond

31 May 2016
Krikamol Muandet
Stef Garasto
C. Cantwell
Bernhard Schölkopf
ArXiv (abs)PDFHTML

Papers citing "Kernel Mean Embedding of Distributions: A Review and Beyond"

12 / 12 papers shown
Title
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
755
37,895
0
20 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,654
0
06 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,510
0
10 Dec 2015
Multi-Scale Context Aggregation by Dilated Convolutions
Multi-Scale Context Aggregation by Dilated Convolutions
Feng Yu
V. Koltun
SSeg
271
8,459
0
23 Nov 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,846
0
02 Nov 2015
Hierarchical Deep Learning Architecture For 10K Objects Classification
Hierarchical Deep Learning Architecture For 10K Objects Classification
A. Katole
Krishna Prasad Yellapragada
A. K. Bedi
S. S. Kalra
M. S. Chaitanya
BDLOCL
43
25
0
07 Sep 2015
Semantic Image Segmentation with Deep Convolutional Nets and Fully
  Connected CRFs
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
206
4,898
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
494
43,717
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,529
0
04 Sep 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
158
5,008
0
21 Dec 2013
Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks
Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks
Alessandro Giusti
D. Ciresan
Jonathan Masci
L. Gambardella
Jürgen Schmidhuber
183
346
0
07 Feb 2013
A unifying view for performance measures in multi-class prediction
A unifying view for performance measures in multi-class prediction
Giuseppe Jurman
Cesare Furlanello
94
361
0
17 Aug 2010
1