ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08737
  4. Cited By
Efficient Estimation of Partially Linear Models for Spatial Data over
  Complex Domain

Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain

27 May 2016
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
ArXivPDFHTML

Papers citing "Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain"

12 / 12 papers shown
Title
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
39
2
0
06 Mar 2024
Stochastic Distributed Optimization under Average Second-order
  Similarity: Algorithms and Analysis
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
25
11
0
15 Apr 2023
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
58
11
0
17 Jun 2022
Communication-efficient distributed eigenspace estimation with arbitrary
  node failures
Communication-efficient distributed eigenspace estimation with arbitrary node failures
Vasileios Charisopoulos
Anil Damle
16
1
0
31 May 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
  Convergence
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
Distributed Estimation for Principal Component Analysis: an Enlarged
  Eigenspace Analysis
Distributed Estimation for Principal Component Analysis: an Enlarged Eigenspace Analysis
Xi Chen
J. Lee
He Li
Yun Yang
23
6
0
05 Apr 2020
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed
  Wigner Law
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law
Max Simchowitz
A. Alaoui
Benjamin Recht
30
38
0
04 Apr 2018
On Noisy Negative Curvature Descent: Competing with Gradient Descent for
  Faster Non-convex Optimization
On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization
Mingrui Liu
Tianbao Yang
33
23
0
25 Sep 2017
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
35
89
0
10 Jul 2017
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d)
  Lower Bound for Eigenvector Approximation
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d) Lower Bound for Eigenvector Approximation
Max Simchowitz
A. Alaoui
Benjamin Recht
18
13
0
14 Apr 2017
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and
  Hardness
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and Hardness
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
Shashanka Ubaru
David P. Woodruff
8
36
0
13 Apr 2017
Robust Shift-and-Invert Preconditioning: Faster and More Sample
  Efficient Algorithms for Eigenvector Computation
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
Chi Jin
Sham Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
22
42
0
29 Oct 2015
1