ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08294
  4. Cited By
Privacy Odometers and Filters: Pay-as-you-Go Composition

Privacy Odometers and Filters: Pay-as-you-Go Composition

26 May 2016
Ryan M. Rogers
Aaron Roth
Jonathan R. Ullman
Salil P. Vadhan
ArXivPDFHTML

Papers citing "Privacy Odometers and Filters: Pay-as-you-Go Composition"

7 / 7 papers shown
Title
On the Differential Privacy and Interactivity of Privacy Sandbox Reports
On the Differential Privacy and Interactivity of Privacy Sandbox Reports
Badih Ghazi
Charlie Harrison
Arpana Hosabettu
Pritish Kamath
Alexander Knop
...
Ethan Leeman
Pasin Manurangsi
Vikas Sahu
Vikas Sahu
Phillipp Schoppmann
111
2
0
22 Dec 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
74
0
0
31 Jul 2024
Concurrent Composition for Interactive Differential Privacy with Adaptive Privacy-Loss Parameters
Concurrent Composition for Interactive Differential Privacy with Adaptive Privacy-Loss Parameters
Samuel Haney
Michael Shoemate
Grace Tian
Salil P. Vadhan
Andrew Vyrros
Vicki Xu
Wanrong Zhang
45
6
0
12 Sep 2023
Algorithmic Stability for Adaptive Data Analysis
Algorithmic Stability for Adaptive Data Analysis
Raef Bassily
Kobbi Nissim
Adam D. Smith
Thomas Steinke
Uri Stemmer
Jonathan R. Ullman
91
267
0
08 Nov 2015
Preserving Statistical Validity in Adaptive Data Analysis
Preserving Statistical Validity in Adaptive Data Analysis
Cynthia Dwork
Vitaly Feldman
Moritz Hardt
T. Pitassi
Omer Reingold
Aaron Roth
74
375
0
10 Nov 2014
The Composition Theorem for Differential Privacy
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
107
680
0
04 Nov 2013
On the `Semantics' of Differential Privacy: A Bayesian Formulation
On the `Semantics' of Differential Privacy: A Bayesian Formulation
S. Kasiviswanathan
Adam D. Smith
89
167
0
27 Mar 2008
1