ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07869
71
204
v1v2 (latest)

Variational Neural Machine Translation

25 May 2016
Biao Zhang
Deyi Xiong
Jinsong Su
    VLMDRL
ArXiv (abs)PDFHTML
Abstract

Models of neural machine translation are often from a discriminative family of encoder-decoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoder-decoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences alone, the variational model introduces a continuous latent variable to explicitly model underlying semantics of source sentences and to guide the generation of target translations. In order to perform an efficient posterior inference, we build a neural posterior approximator that is conditioned only on the source side. Additionally, we employ a reparameterization technique to estimate the variational lower bound so as to enable standard stochastic gradient optimization and large-scale training for the variational model. Experiments on NIST Chinese-English translation tasks show that the proposed variational neural machine translation achieves significant improvements over both state-of-the-art statistical and neural machine translation baselines.

View on arXiv
Comments on this paper