Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07272
Cited By
Matrix Completion has No Spurious Local Minimum
24 May 2016
Rong Ge
J. Lee
Tengyu Ma
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Matrix Completion has No Spurious Local Minimum"
50 / 102 papers shown
Title
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
39
0
0
28 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
Yixuan Zhang
Dongyan
Yudong Chen
Qiaomin Xie
29
0
0
11 Apr 2025
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
82
0
0
13 Mar 2025
On Newton's Method to Unlearn Neural Networks
Nhung Bui
Xinyang Lu
Rachael Hwee Ling Sim
See-Kiong Ng
Bryan Kian Hsiang Low
MU
41
2
0
20 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
12
0
06 Jun 2024
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
38
2
0
18 May 2024
Wave Physics-informed Matrix Factorizations
Harsha Vardhan Tetali
J. Harley
B. Haeffele
35
0
0
21 Dec 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
30
8
0
26 Jun 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
42
33
0
18 May 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
21
0
0
17 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
167
67
0
27 Oct 2022
Simple Alternating Minimization Provably Solves Complete Dictionary Learning
Geyu Liang
G. Zhang
S. Fattahi
Richard Y. Zhang
15
5
0
23 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
32
7
0
04 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
36
58
0
04 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
24
17
0
29 Sep 2022
A Validation Approach to Over-parameterized Matrix and Image Recovery
Lijun Ding
Zhen Qin
Liwei Jiang
Jinxin Zhou
Zhihui Zhu
48
13
0
21 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
59
51
0
12 Sep 2022
Implicit Full Waveform Inversion with Deep Neural Representation
Jian Sun
K. Innanen
AI4CE
40
32
0
08 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
24
10
0
24 Aug 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
50
23
0
07 Jun 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
24
11
0
29 Apr 2022
Randomly Initialized Alternating Least Squares: Fast Convergence for Matrix Sensing
Kiryung Lee
Dominik Stöger
31
11
0
25 Apr 2022
Signal Recovery with Non-Expansive Generative Network Priors
Jorio Cocola
21
1
0
24 Apr 2022
Tensor Completion for Causal Inference with Multivariate Longitudinal Data: A Reevaluation of COVID-19 Mandates
Jonathan Auerbach
M. Slawski
Shixue Zhang
19
0
0
09 Mar 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
27
97
0
02 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
28
8
0
18 Feb 2022
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
25
15
0
28 Nov 2021
Nonparametric Matrix Estimation with One-Sided Covariates
Chao Yu
21
3
0
26 Oct 2021
Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates
Steve Chien
Prateek Jain
Walid Krichene
Steffen Rendle
Shuang Song
Abhradeep Thakurta
Li Zhang
25
19
0
20 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
21
46
0
27 Jun 2021
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
48
13
0
24 Jun 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
19
4
0
21 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Efficient Sparse Coding using Hierarchical Riemannian Pursuit
Ye Xue
Vincent K. N. Lau
Songfu Cai
31
3
0
21 Apr 2021
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized Regime
Richard Y. Zhang
44
25
0
21 Apr 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent
Trung Vu
Raviv Raich
40
10
0
04 Feb 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization
Dan Garber
Atara Kaplan
14
4
0
18 Dec 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
53
0
24 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
113
0
18 May 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
12
5
0
27 Feb 2020
1
2
3
Next