ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07079
  4. Cited By
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets

Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

23 May 2016
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
    AI4CE
ArXivPDFHTML

Papers citing "Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets"

50 / 70 papers shown
Title
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Timur Carstensen
Neeratyoy Mallik
Frank Hutter
Martin Rapp
AI4CE
30
0
0
14 Apr 2025
Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning?
Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning?
Roman Kochnev
Arash Torabi Goodarzi
Zofia Antonina Bentyn
D. Ignatov
Radu Timofte
58
2
0
08 Apr 2025
Trajectory-Based Multi-Objective Hyperparameter Optimization for Model
  Retraining
Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining
Wenyu Wang
Zheyi Fan
Szu Hui Ng
33
0
0
24 May 2024
FedAVO: Improving Communication Efficiency in Federated Learning with
  African Vultures Optimizer
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
29
5
0
02 May 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in
  Nested Subspaces
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
21
36
0
22 Apr 2023
Towards Personalized Preprocessing Pipeline Search
Towards Personalized Preprocessing Pipeline Search
Diego Martinez
Daochen Zha
Qiaoyu Tan
Xia Hu
AI4TS
29
2
0
28 Feb 2023
Transfer Learning for Bayesian Optimization: A Survey
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
39
29
0
12 Feb 2023
Clinical BioBERT Hyperparameter Optimization using Genetic Algorithm
Clinical BioBERT Hyperparameter Optimization using Genetic Algorithm
N. Kollapally
J. Geller
11
2
0
08 Feb 2023
Efficient Evaluation Methods for Neural Architecture Search: A Survey
Efficient Evaluation Methods for Neural Architecture Search: A Survey
Xiangning Xie
Xiaotian Song
Zeqiong Lv
Gary G. Yen
Weiping Ding
Yizhou Sun
32
12
0
14 Jan 2023
Improving Multi-fidelity Optimization with a Recurring Learning Rate for
  Hyperparameter Tuning
Improving Multi-fidelity Optimization with a Recurring Learning Rate for Hyperparameter Tuning
HyunJae Lee
Gihyeon Lee
Junh-Nam Kim
Sungjun Cho
Dohyun Kim
Donggeun Yoo
39
3
0
26 Sep 2022
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
  Zooming Memory-Based Initialization (ZoMBI)
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using Zooming Memory-Based Initialization (ZoMBI)
Alexander E. Siemenn
Zekun Ren
Qianxiao Li
Tonio Buonassisi
46
23
0
26 Aug 2022
Bayesian Optimization Over Iterative Learners with Structured Responses:
  A Budget-aware Planning Approach
Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach
Syrine Belakaria
J. Doppa
Nicolò Fusi
Rishit Sheth
30
7
0
25 Jun 2022
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
Zhen Wang
Weirui Kuang
Ce Zhang
Bolin Ding
Yaliang Li
FedML
31
13
0
08 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
A Survey on Computationally Efficient Neural Architecture Search
A Survey on Computationally Efficient Neural Architecture Search
Shiqing Liu
Haoyu Zhang
Yaochu Jin
32
41
0
03 Jun 2022
Fair and Green Hyperparameter Optimization via Multi-objective and
  Multiple Information Source Bayesian Optimization
Fair and Green Hyperparameter Optimization via Multi-objective and Multiple Information Source Bayesian Optimization
Antonio Candelieri
Andrea Ponti
Francesco Archetti
30
16
0
18 May 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
41
53
0
28 Jan 2022
Neural Capacitance: A New Perspective of Neural Network Selection via
  Edge Dynamics
Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics
Chunheng Jiang
Tejaswini Pedapati
Pin-Yu Chen
Yizhou Sun
Jianxi Gao
24
2
0
11 Jan 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
33
100
0
11 Jan 2022
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
  Mobile Acceleration
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration
Yifan Gong
Geng Yuan
Zheng Zhan
Wei Niu
Zhengang Li
...
Sijia Liu
Bin Ren
Xue Lin
Xulong Tang
Yanzhi Wang
28
10
0
22 Nov 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
7
0
05 Aug 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Bin Cui
LRM
29
44
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
82
448
0
13 Jul 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
35
22
0
10 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
27
10
0
02 Jun 2021
Data-driven discovery of interpretable causal relations for deep
  learning material laws with uncertainty propagation
Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation
Xiao Sun
B. Bahmani
Nikolaos N. Vlassis
WaiChing Sun
Yanxun Xu
CML
AI4CE
65
26
0
20 May 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search
  and Hyperparameter Optimization
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
Discovering Diverse Athletic Jumping Strategies
Discovering Diverse Athletic Jumping Strategies
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
40
46
0
02 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
100
17
0
23 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
40
225
0
23 Mar 2021
Problem-fluent models for complex decision-making in autonomous
  materials research
Problem-fluent models for complex decision-making in autonomous materials research
Soojung Baek
Kristofer G. Reyes
AI4CE
20
2
0
13 Mar 2021
On the Importance of Hyperparameter Optimization for Model-based
  Reinforcement Learning
On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
Bangnig Zhang
Raghunandan Rajan
Luis Pineda
Nathan Lambert
André Biedenkapp
Kurtland Chua
Frank Hutter
Roberto Calandra
23
100
0
26 Feb 2021
On the performance of deep learning for numerical optimization: an
  application to protein structure prediction
On the performance of deep learning for numerical optimization: an application to protein structure prediction
H. Rakhshani
L. Idoumghar
Soheila Ghambari
Julien Lepagnot
Mathieu Brévilliers
19
9
0
17 Dec 2020
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Bin Cui
21
34
0
08 Dec 2020
Neural fidelity warping for efficient robot morphology design
Neural fidelity warping for efficient robot morphology design
Sha Hu
Zeshi Yang
Greg Mori
52
4
0
08 Dec 2020
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud
  via Sub-Sampling
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
8
18
0
09 Nov 2020
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
  Entropy Search Approach
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach
Syrine Belakaria
Aryan Deshwal
J. Doppa
6
41
0
02 Nov 2020
Scalable computation of predictive probabilities in probit models with
  Gaussian process priors
Scalable computation of predictive probabilities in probit models with Gaussian process priors
JIAN-PENG Cao
Daniele Durante
M. Genton
34
11
0
03 Sep 2020
Network Architecture Search for Domain Adaptation
Network Architecture Search for Domain Adaptation
Yichen Li
Xingchao Peng
OOD
21
15
0
13 Aug 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Understanding the effect of hyperparameter optimization on machine
  learning models for structure design problems
Understanding the effect of hyperparameter optimization on machine learning models for structure design problems
Xianping Du
Hongyi Xu
Feng Zhu
AI4CE
9
44
0
04 Jul 2020
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
20
33
0
22 Jun 2020
Additive Tree-Structured Covariance Function for Conditional Parameter
  Spaces in Bayesian Optimization
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
21
7
0
21 Jun 2020
Multi-fidelity Neural Architecture Search with Knowledge Distillation
Multi-fidelity Neural Architecture Search with Knowledge Distillation
I. Trofimov
Nikita Klyuchnikov
Mikhail Salnikov
Alexander N. Filippov
Evgeny Burnaev
32
15
0
15 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach
  for Extreme Gradient Boosting
A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting
Sayan Putatunda
Kiran Rama
16
28
0
10 Apr 2020
Adaptive Batching for Gaussian Process Surrogates with Application in
  Noisy Level Set Estimation
Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
Xiong Lyu
M. Ludkovski
27
4
0
19 Mar 2020
Robust Federated Learning Through Representation Matching and Adaptive
  Hyper-parameters
Robust Federated Learning Through Representation Matching and Adaptive Hyper-parameters
Hesham Mostafa
FedML
25
39
0
30 Dec 2019
12
Next