ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06049
  4. Cited By
A Multi-Batch L-BFGS Method for Machine Learning

A Multi-Batch L-BFGS Method for Machine Learning

19 May 2016
A. Berahas
J. Nocedal
Martin Takáč
    ODL
ArXivPDFHTML

Papers citing "A Multi-Batch L-BFGS Method for Machine Learning"

19 / 19 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
Knowledge Distillation with Adapted Weight
Sirong Wu
Xi Luo
Junjie Liu
Yuhui Deng
43
0
0
06 Jan 2025
Second-order Information Promotes Mini-Batch Robustness in
  Variance-Reduced Gradients
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention
Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention
Ethan N. Evans
Matthew G. Cook
Zachary P. Bradshaw
Margarite L. LaBorde
48
5
0
21 Mar 2024
Component-Wise Natural Gradient Descent -- An Efficient Neural Network
  Optimization
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
15
1
0
11 Oct 2022
SP2: A Second Order Stochastic Polyak Method
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
26
13
0
17 Jul 2022
Deep Leakage from Model in Federated Learning
Deep Leakage from Model in Federated Learning
Zihao Zhao
Mengen Luo
Wenbo Ding
FedML
26
14
0
10 Jun 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
22
20
0
09 Jun 2022
Resource-constrained Federated Edge Learning with Heterogeneous Data:
  Formulation and Analysis
Resource-constrained Federated Edge Learning with Heterogeneous Data: Formulation and Analysis
Yi Liu
Yuanshao Zhu
James J. Q. Yu
FedML
27
28
0
14 Oct 2021
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
  Optimization
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic Optimization
Raghu Bollapragada
Stefan M. Wild
35
11
0
24 Sep 2021
An Adaptive Memory Multi-Batch L-BFGS Algorithm for Neural Network
  Training
An Adaptive Memory Multi-Batch L-BFGS Algorithm for Neural Network Training
Federico Zocco
Seán F. McLoone
ODL
21
4
0
14 Dec 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
11
10
0
06 Jun 2020
Stochastic Calibration of Radio Interferometers
Stochastic Calibration of Radio Interferometers
S. Yatawatta
14
6
0
02 Mar 2020
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
Deep Reinforcement Learning via L-BFGS Optimization
Deep Reinforcement Learning via L-BFGS Optimization
Chris Paxton
Roummel F. Marcia
OffRL
11
0
0
06 Nov 2018
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical
  Risk Minimization via Accumulating Sample Strategy
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
22
18
0
26 Oct 2018
On the Acceleration of L-BFGS with Second-Order Information and
  Stochastic Batches
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
32
7
0
14 Jul 2018
Optimization Methods for Supervised Machine Learning: From Linear Models
  to Deep Learning
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
Frank E. Curtis
K. Scheinberg
39
45
0
30 Jun 2017
1