ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.05537
  4. Cited By
ABC random forests for Bayesian parameter inference

ABC random forests for Bayesian parameter inference

18 May 2016
Louis Raynal
Jean-Michel Marin
Pierre Pudlo
M. Ribatet
Christian P. Robert
A. Estoup
ArXivPDFHTML

Papers citing "ABC random forests for Bayesian parameter inference"

12 / 12 papers shown
Title
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
51
0
0
10 Oct 2024
Copula Approximate Bayesian Computation Using Distribution Random
  Forests
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
44
1
0
28 Feb 2024
A Bayesian Optimization approach for calibrating large-scale
  activity-based transport models
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
29
5
0
07 Feb 2023
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
186
0
12 Jan 2021
Assessment and adjustment of approximate inference algorithms using the
  law of total variance
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
16
15
0
20 Nov 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
37
14
0
26 Aug 2019
Likelihood-free approximate Gibbs sampling
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
30
24
0
11 Jun 2019
Component-wise approximate Bayesian computation via Gibbs-like steps
Component-wise approximate Bayesian computation via Gibbs-like steps
Grégoire Clarté
Christian P. Robert
Robin J. Ryder
Julien Stoehr
13
30
0
31 May 2019
Spectral Density-Based and Measure-Preserving ABC for partially observed
  diffusion processes. An illustration on Hamiltonian SDEs
Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
E. Buckwar
M. Tamborrino
I. Tubikanec
21
36
0
04 Mar 2019
ABC-CDE: Towards Approximate Bayesian Computation with Complex
  High-Dimensional Data and Limited Simulations
ABC-CDE: Towards Approximate Bayesian Computation with Complex High-Dimensional Data and Limited Simulations
Rafael Izbicki
Ann B. Lee
T. Pospisil
44
34
0
14 May 2018
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
113
2,741
0
18 Aug 2015
1