ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.04636
26
33

Learning the Problem-Optimum Map: Analysis and Application to Global Optimization in Robotics

16 May 2016
Kris K. Hauser
ArXivPDFHTML
Abstract

This paper describes a data-driven framework for approximate global optimization in which precomputed solutions to a sample of problems are retrieved and adapted during online use to solve novel problems. This approach has promise for real-time applications in robotics, since it can produce near-globally optimal solutions orders of magnitude faster than standard methods. This paper establishes theoretical conditions on how many and where samples are needed over the space of problems to achieve a given approximation quality. The framework is applied to solve globally optimal collision-free inverse kinematics (IK) problems, wherein large solution databases are used to produce near-optimal solutions in sub-millisecond time on a standard PC.

View on arXiv
Comments on this paper