Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.04131
Cited By
Barzilai-Borwein Step Size for Stochastic Gradient Descent
13 May 2016
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Barzilai-Borwein Step Size for Stochastic Gradient Descent"
19 / 19 papers shown
Title
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Distributed and Scalable Optimization for Robust Proton Treatment Planning
A. Fu
V. Taasti
M. Zarepisheh
24
2
0
27 Apr 2023
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
23
1
0
26 Oct 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
11
1
0
23 Aug 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
35
1
0
28 Apr 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
19
1
0
30 Sep 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Simon Lacoste-Julien
18
18
0
18 Feb 2021
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems
Zhan Gao
Alec Koppel
Alejandro Ribeiro
14
10
0
02 Jul 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
20
3
0
01 Dec 2019
Block stochastic gradient descent for large-scale tomographic reconstruction in a parallel network
Yushan Gao
A. Biguri
T. Blumensath
18
3
0
28 Mar 2019
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
19
358
0
05 Jun 2018
SPSA-FSR: Simultaneous Perturbation Stochastic Approximation for Feature Selection and Ranking
Zeren D. Yenice
Niranjan Adhikari
Yong Kai Wong
V. Aksakalli
A. T. Gumus
B. Abbasi
25
8
0
16 Apr 2018
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
35
6
0
20 Nov 2017
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
14
62
0
18 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1