ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.02869
  4. Cited By
An Efficient and Flexible Spike Train Model via Empirical Bayes
v1v2v3v4v5v6 (latest)

An Efficient and Flexible Spike Train Model via Empirical Bayes

10 May 2016
Qi She
Xiaoli Wu
Beth Jelfs
Adam S. Charles
Rosa H.M.Chan
ArXiv (abs)PDFHTML

Papers citing "An Efficient and Flexible Spike Train Model via Empirical Bayes"

4 / 4 papers shown
Title
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
37
34
0
01 Jul 2019
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
70
155
0
26 May 2016
Discovering Latent Network Structure in Point Process Data
Discovering Latent Network Structure in Point Process Data
Scott W. Linderman
Ryan P. Adams
91
283
0
04 Feb 2014
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
169
4,309
0
18 Nov 2011
1