Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.02065
Cited By
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
6 May 2016
Mark Bun
Thomas Steinke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds"
50 / 207 papers shown
Title
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
147
0
21 May 2020
Privacy Preserving Face Recognition Utilizing Differential Privacy
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
D. Liu
S. Çamtepe
PICV
50
117
0
21 May 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
10
203
0
10 May 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Input Perturbation: A New Paradigm between Central and Local Differential Privacy
Yilin Kang
Yong Liu
Ben Niu
Xin-Yi Tong
Likun Zhang
Weiping Wang
27
11
0
20 Feb 2020
LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale
Ryan M. Rogers
S. Subramaniam
Sean Peng
D. Durfee
Seunghyun Lee
Santosh Kumar Kancha
Shraddha Sahay
P. Ahammad
27
77
0
14 Feb 2020
Guidelines for Implementing and Auditing Differentially Private Systems
Daniel Kifer
Solomon Messing
Aaron Roth
Abhradeep Thakurta
Danfeng Zhang
16
34
0
10 Feb 2020
Efficient, Noise-Tolerant, and Private Learning via Boosting
Mark Bun
M. Carmosino
Jessica Sorrell
FedML
16
17
0
04 Feb 2020
Reasoning About Generalization via Conditional Mutual Information
Thomas Steinke
Lydia Zakynthinou
23
160
0
24 Jan 2020
Encode, Shuffle, Analyze Privacy Revisited: Formalizations and Empirical Evaluation
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Shuang Song
Kunal Talwar
Abhradeep Thakurta
29
83
0
10 Jan 2020
Differentially Private Confidence Intervals
Wenxin Du
C. Foot
Monica Moniot
Andrew Bray
Adam Groce
20
45
0
07 Jan 2020
Reviewing and Improving the Gaussian Mechanism for Differential Privacy
Jun Zhao
Teng Wang
Tao Bai
Kwok-Yan Lam
Zhiying Xu
Shuyu Shi
Xuebin Ren
Xinyu Yang
Yang Liu
Han Yu
44
30
0
27 Nov 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
Providing Input-Discriminative Protection for Local Differential Privacy
Xiaolan Gu
Ming Li
Li Xiong
Yang Cao
19
41
0
04 Nov 2019
Composition Properties of Bayesian Differential Privacy
Jun Zhao
12
1
0
02 Nov 2019
A New Analysis of Differential Privacy's Generalization Guarantees
Christopher Jung
Katrina Ligett
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Moshe Shenfeld
FedML
21
47
0
09 Sep 2019
Differentially Private SQL with Bounded User Contribution
Royce J. Wilson
Celia Yuxin Zhang
William K. C. Lam
Damien Desfontaines
Daniel Simmons-Marengo
Bryant Gipson
27
147
0
04 Sep 2019
Rényi Differential Privacy of the Sampled Gaussian Mechanism
Ilya Mironov
Kunal Talwar
Li Zhang
28
278
0
28 Aug 2019
Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis
Jing Ma
Qiuchen Zhang
Jian Lou
Joyce C. Ho
Li Xiong
Xiaoqian Jiang
30
44
0
26 Aug 2019
Local Differential Privacy for Deep Learning
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
Mohammed Atiquzzaman
41
220
0
08 Aug 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
16
25
0
28 Jun 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
47
74
0
06 Jun 2019
Locally Differentially Private Data Collection and Analysis
Teng Wang
Jun Zhao
Xinyu Yang
Xuebin Ren
27
13
0
05 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
33
122
0
04 Jun 2019
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
37
36
0
28 May 2019
KNG: The K-Norm Gradient Mechanism
M. Reimherr
Jordan Awan
29
23
0
23 May 2019
Practical Differentially Private Top-
k
k
k
Selection with Pay-what-you-get Composition
D. Durfee
Ryan M. Rogers
23
82
0
10 May 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
Lower Bounds for Locally Private Estimation via Communication Complexity
John C. Duchi
Ryan M. Rogers
13
93
0
01 Feb 2019
Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä
Joonas Jälkö
O. Dikmen
Antti Honkela
27
25
0
29 Jan 2019
Differentially Private ADMM for Distributed Medical Machine Learning
Jiahao Ding
Xiaoqi Qin
Wenjun Xu
Yanmin Gong
Zhu Han
Miao Pan
FedML
32
20
0
07 Jan 2019
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
19
884
0
07 Dec 2018
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
24
357
0
03 Dec 2018
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
420
0
29 Nov 2018
Differentially Private Contextual Linear Bandits
R. Shariff
Or Sheffet
6
114
0
28 Sep 2018
Chorus: a Programming Framework for Building Scalable Differential Privacy Mechanisms
Noah M. Johnson
Joseph P. Near
J. M. Hellerstein
D. Song
22
24
0
20 Sep 2018
Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget
Jaewoo Lee
Daniel Kifer
22
156
0
28 Aug 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
20
170
0
20 Aug 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu-Xiang Wang
Borja Balle
S. Kasiviswanathan
14
398
0
31 Jul 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
33
39
0
11 Jul 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
27
378
0
04 Jul 2018
The Right Complexity Measure in Locally Private Estimation: It is not the Fisher Information
John C. Duchi
Feng Ruan
23
50
0
14 Jun 2018
An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm
Christopher DeCarolis
Mukul Ram
Seyed-Alireza Esmaeili
Yu-Xiang Wang
Furong Huang
FedML
11
12
0
25 May 2018
Differentially Private Confidence Intervals for Empirical Risk Minimization
Yue Wang
Daniel Kifer
Jaewoo Lee
21
33
0
11 Apr 2018
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
25
90
0
27 Mar 2018
The Everlasting Database: Statistical Validity at a Fair Price
Blake E. Woodworth
Vitaly Feldman
Saharon Rosset
Nathan Srebro
32
2
0
12 Mar 2018
Scalable Private Learning with PATE
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
32
606
0
24 Feb 2018
Differentially Private Matrix Completion Revisited
Prateek Jain
Om Thakkar
Abhradeep Thakurta
FedML
26
34
0
28 Dec 2017
Calibrating Noise to Variance in Adaptive Data Analysis
Vitaly Feldman
Thomas Steinke
38
47
0
19 Dec 2017
Previous
1
2
3
4
5
Next