ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.07279
  4. Cited By
Actionness Estimation Using Hybrid Fully Convolutional Networks

Actionness Estimation Using Hybrid Fully Convolutional Networks

25 April 2016
Limin Wang
Yu Qiao
Xiaoou Tang
Luc Van Gool
ArXiv (abs)PDFHTML

Papers citing "Actionness Estimation Using Hybrid Fully Convolutional Networks"

15 / 15 papers shown
Title
Action Tubelet Detector for Spatio-Temporal Action Localization
Action Tubelet Detector for Spatio-Temporal Action Localization
Vicky Kalogeiton
Philippe Weinzaepfel
V. Ferrari
Cordelia Schmid
79
325
0
04 May 2017
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
755
37,925
0
20 May 2016
Real-time Action Recognition with Enhanced Motion Vector CNNs
Real-time Action Recognition with Enhanced Motion Vector CNNs
Bowen Zhang
Limin Wang
Zhe Wang
Yu Qiao
Hanli Wang
85
419
0
26 Apr 2016
Towards Good Practices for Very Deep Two-Stream ConvNets
Towards Good Practices for Very Deep Two-Stream ConvNets
Limin Wang
Yuanjun Xiong
Zhe Wang
Yu Qiao
100
445
0
08 Jul 2015
Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors
Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors
Limin Wang
Yu Qiao
Xiaoou Tang
84
1,162
0
19 May 2015
Finding Action Tubes
Finding Action Tubes
Georgia Gkioxari
Jitendra Malik
80
599
0
21 Nov 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
496
43,717
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,575
0
04 Sep 2014
How good are detection proposals, really?
How good are detection proposals, really?
J. Hosang
Rodrigo Benenson
Bernt Schiele
ObjD
83
272
0
26 Jun 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
287
14,715
0
20 Jun 2014
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
Karen Simonyan
Andrew Zisserman
261
7,545
0
09 Jun 2014
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Ken Chatfield
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
224
3,420
0
14 May 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
605
15,907
0
12 Nov 2013
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
295
26,223
0
11 Nov 2013
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
K. Soomro
Amir Zamir
M. Shah
CLIPVGen
165
6,170
0
03 Dec 2012
1