ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.06968
  4. Cited By
Agnostic Estimation of Mean and Covariance

Agnostic Estimation of Mean and Covariance

24 April 2016
Kevin A. Lai
Anup B. Rao
Santosh Vempala
ArXivPDFHTML

Papers citing "Agnostic Estimation of Mean and Covariance"

50 / 101 papers shown
Title
SoS Degree Reduction with Applications to Clustering and Robust Moment
  Estimation
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
David Steurer
Stefan Tiegel
29
10
0
05 Jan 2021
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
  and Defenses
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
32
271
0
18 Dec 2020
Learning from History for Byzantine Robust Optimization
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
30
174
0
18 Dec 2020
Near-Optimal Statistical Query Hardness of Learning Halfspaces with
  Massart Noise
Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise
Ilias Diakonikolas
D. Kane
26
24
0
17 Dec 2020
Optimal Mean Estimation without a Variance
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
26
21
0
24 Nov 2020
Settling the Robust Learnability of Mixtures of Gaussians
Settling the Robust Learnability of Mixtures of Gaussians
Allen Liu
Ankur Moitra
40
41
0
06 Nov 2020
Outlier Robust Mean Estimation with Subgaussian Rates via Stability
Outlier Robust Mean Estimation with Subgaussian Rates via Stability
Ilias Diakonikolas
D. Kane
Ankit Pensia
29
57
0
30 Jul 2020
Optimal Robust Linear Regression in Nearly Linear Time
Optimal Robust Linear Regression in Nearly Linear Time
Yeshwanth Cherapanamjeri
Efe Aras
Nilesh Tripuraneni
Michael I. Jordan
Nicolas Flammarion
Peter L. Bartlett
35
35
0
16 Jul 2020
Subspace approximation with outliers
Subspace approximation with outliers
Amit Deshpande
Rameshwar Pratap
27
3
0
30 Jun 2020
Generalization Bounds in the Presence of Outliers: a Median-of-Means
  Study
Generalization Bounds in the Presence of Outliers: a Median-of-Means Study
Pierre Laforgue
Guillaume Staerman
Stéphan Clémençon
13
3
0
09 Jun 2020
Classification Under Misspecification: Halfspaces, Generalized Linear
  Models, and Connections to Evolvability
Classification Under Misspecification: Halfspaces, Generalized Linear Models, and Connections to Evolvability
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
26
21
0
08 Jun 2020
Designing Differentially Private Estimators in High Dimensions
Designing Differentially Private Estimators in High Dimensions
Aditya Dhar
Jason Huang
24
1
0
02 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Estimating Principal Components under Adversarial Perturbations
Estimating Principal Components under Adversarial Perturbations
Pranjal Awasthi
Xue Chen
Aravindan Vijayaraghavan
AAML
17
2
0
31 May 2020
Robust estimation via generalized quasi-gradients
Robust estimation via generalized quasi-gradients
Banghua Zhu
Jiantao Jiao
Jacob Steinhardt
23
43
0
28 May 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
38
86
0
16 May 2020
Robustly Learning any Clusterable Mixture of Gaussians
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
38
45
0
13 May 2020
Outlier-Robust Clustering of Non-Spherical Mixtures
Outlier-Robust Clustering of Non-Spherical Mixtures
Ainesh Bakshi
Pravesh Kothari
27
31
0
06 May 2020
High-Dimensional Robust Mean Estimation via Gradient Descent
High-Dimensional Robust Mean Estimation via Gradient Descent
Yu Cheng
Ilias Diakonikolas
Rong Ge
Mahdi Soltanolkotabi
17
31
0
04 May 2020
Robust estimation with Lasso when outputs are adversarially contaminated
Robust estimation with Lasso when outputs are adversarially contaminated
Takeyuki Sasai
Hironori Fujisawa
27
8
0
13 Apr 2020
On Robust Mean Estimation under Coordinate-level Corruption
On Robust Mean Estimation under Coordinate-level Corruption
Zifan Liu
Jongho Park
Theodoros Rekatsinas
Christos Tzamos
33
8
0
10 Feb 2020
All-In-One Robust Estimator of the Gaussian Mean
All-In-One Robust Estimator of the Gaussian Mean
A. Dalalyan
A. Minasyan
30
25
0
04 Feb 2020
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box
  Knowledge Transfer
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
26
167
0
24 Dec 2019
Optimal Robust Learning of Discrete Distributions from Batches
Optimal Robust Learning of Discrete Distributions from Batches
Ayush Jain
A. Orlitsky
16
14
0
19 Nov 2019
Outlier-Robust High-Dimensional Sparse Estimation via Iterative
  Filtering
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
23
41
0
19 Nov 2019
A Fast Spectral Algorithm for Mean Estimation with Sub-Gaussian Rates
A Fast Spectral Algorithm for Mean Estimation with Sub-Gaussian Rates
Zhixian Lei
K. Luh
Prayaag Venkat
Fred Zhang
66
34
0
13 Aug 2019
Estimating location parameters in entangled single-sample distributions
Estimating location parameters in entangled single-sample distributions
Ankit Pensia
Varun Jog
Po-Ling Loh
16
7
0
06 Jul 2019
Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved
  Outlier Detection
Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection
Yihe Dong
Samuel B. Hopkins
Jungshian Li
21
99
0
26 Jun 2019
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
46
80
0
24 Jun 2019
List-Decodable Linear Regression
List-Decodable Linear Regression
Sushrut Karmalkar
Adam R. Klivans
Pravesh Kothari
34
74
0
14 May 2019
Outlier-robust estimation of a sparse linear model using
  $\ell_1$-penalized Huber's $M$-estimator
Outlier-robust estimation of a sparse linear model using ℓ1\ell_1ℓ1​-penalized Huber's MMM-estimator
A. Dalalyan
Philip Thompson
23
67
0
12 Apr 2019
Better Algorithms for Stochastic Bandits with Adversarial Corruptions
Better Algorithms for Stochastic Bandits with Adversarial Corruptions
Anupam Gupta
Tomer Koren
Kunal Talwar
AAML
8
151
0
22 Feb 2019
High Dimensional Robust $M$-Estimation: Arbitrary Corruption and Heavy
  Tails
High Dimensional Robust MMM-Estimation: Arbitrary Corruption and Heavy Tails
L. Liu
Tianyang Li
Constantine Caramanis
21
14
0
24 Jan 2019
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Mean Estimation with Sub-Gaussian Rates in Polynomial Time
Mean Estimation with Sub-Gaussian Rates in Polynomial Time
Samuel B. Hopkins
18
79
0
19 Sep 2018
Efficient Statistics, in High Dimensions, from Truncated Samples
Efficient Statistics, in High Dimensions, from Truncated Samples
C. Daskalakis
Themis Gouleakis
Christos Tzamos
Manolis Zampetakis
44
47
0
11 Sep 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
High Dimensional Robust Sparse Regression
High Dimensional Robust Sparse Regression
L. Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
12
71
0
29 May 2018
Robust Nonparametric Regression under Huber's $ε$-contamination
  Model
Robust Nonparametric Regression under Huber's εεε-contamination Model
S. Du
Yining Wang
Sivaraman Balakrishnan
Pradeep Ravikumar
Aarti Singh
28
12
0
26 May 2018
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
149
0
01 May 2018
Efficient Algorithms for Outlier-Robust Regression
Efficient Algorithms for Outlier-Robust Regression
Adam R. Klivans
Pravesh Kothari
Raghu Meka
AAML
24
154
0
08 Mar 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
Distributed Statistical Machine Learning in Adversarial Settings:
  Byzantine Gradient Descent
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
Yudong Chen
Lili Su
Jiaming Xu
FedML
19
241
0
16 May 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
39
138
0
15 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
21
252
0
02 Mar 2017
Robust Sparse Estimation Tasks in High Dimensions
Robust Sparse Estimation Tasks in High Dimensions
Jerry Li
53
27
0
20 Feb 2017
Robust Regression via Mutivariate Regression Depth
Robust Regression via Mutivariate Regression Depth
Chao Gao
38
48
0
15 Feb 2017
Learning from Untrusted Data
Learning from Untrusted Data
Moses Charikar
Jacob Steinhardt
Gregory Valiant
FedML
OOD
38
292
0
07 Nov 2016
Robust Learning of Fixed-Structure Bayesian Networks
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
46
46
0
23 Jun 2016
Previous
123
Next