ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.03053
  4. Cited By
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics
  from Population Spike Trains

Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains

11 April 2016
Yuan Zhao
Il-Su Park
ArXivPDFHTML

Papers citing "Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains"

11 / 11 papers shown
Title
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffM
SyDa
28
1
0
30 Jul 2024
Latent Diffusion for Neural Spiking Data
Latent Diffusion for Neural Spiking Data
J. Kapoor
Auguste Schulz
Julius Vetter
Felix Pei
Richard Gao
Jakob H. Macke
DiffM
38
2
0
27 Jun 2024
Real-Time Variational Method for Learning Neural Trajectory and its
  Dynamics
Real-Time Variational Method for Learning Neural Trajectory and its Dynamics
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
OffRL
21
6
0
18 May 2023
Compressed Predictive Information Coding
Compressed Predictive Information Coding
Rui Meng
Tianyi Luo
K. Bouchard
24
1
0
03 Mar 2022
Deep inference of latent dynamics with spatio-temporal super-resolution
  using selective backpropagation through time
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
Feng Zhu
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
C. Pandarinath
27
10
0
29 Oct 2021
Nonnegative spatial factorization
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
16
11
0
12 Oct 2021
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
50
87
0
09 Sep 2021
Representation learning for neural population activity with Neural Data
  Transformers
Representation learning for neural population activity with Neural Data Transformers
Joel Ye
C. Pandarinath
AI4TS
AI4CE
11
52
0
02 Aug 2021
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
20
34
0
01 Jul 2019
LFADS - Latent Factor Analysis via Dynamical Systems
LFADS - Latent Factor Analysis via Dynamical Systems
David Sussillo
Rafal Jozefowicz
L. F. Abbott
C. Pandarinath
AI4CE
24
89
0
22 Aug 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
16
155
0
26 May 2016
1