Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.02390
Cited By
Minimax Optimal Procedures for Locally Private Estimation
8 April 2016
John C. Duchi
Martin J. Wainwright
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimax Optimal Procedures for Locally Private Estimation"
50 / 69 papers shown
Title
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
55
0
0
03 May 2025
Locally Private Nonparametric Contextual Multi-armed Bandits
Yuheng Ma
Feiyu Jiang
Zifeng Zhao
Hanfang Yang
Y. Yu
44
0
0
11 Mar 2025
Distribution-Aware Mean Estimation under User-level Local Differential Privacy
Corentin Pla
Hugo Richard
Maxime Vono
FedML
39
0
0
12 Oct 2024
Camel: Communication-Efficient and Maliciously Secure Federated Learning in the Shuffle Model of Differential Privacy
Shuangqing Xu
Yifeng Zheng
Zhongyun Hua
FedML
21
2
0
04 Oct 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
36
1
0
08 Aug 2024
Contraction of Private Quantum Channels and Private Quantum Hypothesis Testing
Theshani Nuradha
Mark M. Wilde
39
6
0
26 Jun 2024
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Shaowei Wang
Changyu Dong
Xiangfu Song
Jin Li
Zhili Zhou
Di Wang
Han Wu
41
0
0
26 Jun 2024
Locally Private Estimation with Public Features
Yuheng Ma
Ke Jia
Hanfang Yang
42
3
0
22 May 2024
Sketches-based join size estimation under local differential privacy
Meifan Zhang
Xin Liu
Lihua Yin
26
0
0
19 May 2024
Smooth Sensitivity for Geo-Privacy
Yuting Liang
Ke Yi
30
0
0
10 May 2024
Private Online Community Detection for Censored Block Models
Mohamed Seif
Liyan Xie
Andrea J. Goldsmith
H. Vincent Poor
36
1
0
09 May 2024
Mean Estimation with User-Level Privacy for Spatio-Temporal IoT Datasets
V. A. Rameshwar
Anshoo Tandon
Prajjwal Gupta
Aditya Vikram Singh
Novoneel Chakraborty
Abhay Sharma
18
3
0
29 Jan 2024
General Inferential Limits Under Differential and Pufferfish Privacy
J. Bailie
Ruobin Gong
35
1
0
27 Jan 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
41
0
0
09 Dec 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
61
19
0
08 Jun 2023
Triangle Counting with Local Edge Differential Privacy
T. Eden
Quanquan C. Liu
Sofya Raskhodnikova
Adam D. Smith
72
13
0
03 May 2023
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Syomantak Chaudhuri
T. Courtade
27
4
0
27 Apr 2023
Federated Privacy-preserving Collaborative Filtering for On-Device Next App Prediction
A. Sayapin
Gleb Balitskiy
Daniel Bershatsky
Aleksandr Katrutsa
Evgeny Frolov
Alexey Frolov
Ivan Oseledets
Vitaliy N. Kharin
FedML
26
1
0
05 Feb 2023
General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean Estimation
Aleksandar Nikolov
Haohua Tang
49
4
0
31 Jan 2023
Anonymized Histograms in Intermediate Privacy Models
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
PICV
115
1
0
27 Oct 2022
Contraction of Locally Differentially Private Mechanisms
S. Asoodeh
Huanyu Zhang
26
10
0
24 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
Privacy Aware Experimentation over Sensitive Groups: A General Chi Square Approach
R. Friedberg
Ryan M. Rogers
26
3
0
17 Aug 2022
Differentially Private Linear Bandits with Partial Distributed Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
FedML
34
13
0
12 Jul 2022
sqSGD: Locally Private and Communication Efficient Federated Learning
Yan Feng
Tao Xiong
Ruofan Wu
Lingjuan Lv
Leilei Shi
FedML
25
2
0
21 Jun 2022
Communication-constrained hypothesis testing: Optimality, robustness, and reverse data processing inequalities
Ankit Pensia
Varun Jog
Po-Ling Loh
23
8
0
06 Jun 2022
Fine-grained Poisoning Attack to Local Differential Privacy Protocols for Mean and Variance Estimation
Xiaoguang Li
Ninghui Li
Wenhai Sun
Neil Zhenqiang Gong
Hui Li
AAML
63
15
0
24 May 2022
Network change point localisation under local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
27
7
0
14 May 2022
Statistical Data Privacy: A Song of Privacy and Utility
Aleksandra B. Slavkovic
Jeremy Seeman
23
26
0
06 May 2022
Optimal Algorithms for Mean Estimation under Local Differential Privacy
Hilal Asi
Vitaly Feldman
Kunal Talwar
40
41
0
05 May 2022
OPTT: Optimal Piecewise Transformation Technique for Analyzing Numerical Data under Local Differential Privacy
Fei Ma
Renbo Zhu
Ping Wang
21
1
0
09 Dec 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
13
102
0
17 Nov 2021
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
18
13
0
08 Nov 2021
Improving the utility of locally differentially private protocols for longitudinal and multidimensional frequency estimates
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
X. Xiao
15
29
0
08 Nov 2021
Locally Differentially Private Reinforcement Learning for Linear Mixture Markov Decision Processes
Chonghua Liao
Jiafan He
Quanquan Gu
6
17
0
19 Oct 2021
Private sampling: a noiseless approach for generating differentially private synthetic data
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
SyDa
29
14
0
30 Sep 2021
Private Adaptive Gradient Methods for Convex Optimization
Hilal Asi
John C. Duchi
Alireza Fallah
O. Javidbakht
Kunal Talwar
16
53
0
25 Jun 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
31
25
0
17 Jun 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
144
0
11 Feb 2021
Optimal Private Median Estimation under Minimal Distributional Assumptions
Christos Tzamos
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Ilias Zadik
27
21
0
12 Nov 2020
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
43
20
0
08 Nov 2020
Unified lower bounds for interactive high-dimensional estimation under information constraints
Jayadev Acharya
C. Canonne
Ziteng Sun
Himanshu Tyagi
28
29
0
13 Oct 2020
An Information Theoretic approach to Post Randomization Methods under Differential Privacy
Fadhel Ayed
Marco Battiston
F. Camerlenghi
24
2
0
23 Sep 2020
Interactive Inference under Information Constraints
Jayadev Acharya
C. Canonne
Yuhan Liu
Ziteng Sun
Himanshu Tyagi
28
35
0
21 Jul 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
27
50
0
11 Jun 2020
Locally private non-asymptotic testing of discrete distributions is faster using interactive mechanisms
Thomas B. Berrett
C. Butucea
27
34
0
26 May 2020
Local Differential Privacy based Federated Learning for Internet of Things
Yang Zhao
Jun Zhao
Mengmeng Yang
Teng Wang
Ning Wang
Lingjuan Lyu
Dusit Niyato
Kwok-Yan Lam
25
292
0
19 Apr 2020
Asymptotic Theory for Differentially Private Generalized
β
β
β
-models with Parameters Increasing
Yifan Fan
Huiming Zhang
T. Yan
FedML
12
14
0
28 Feb 2020
BiSample: Bidirectional Sampling for Handling Missing Data with Local Differential Privacy
Lin Sun
Xiaojun Ye
Jun Zhao
Chenhui Lu
Mengmeng Yang
17
8
0
13 Feb 2020
1
2
Next