Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.02080
Cited By
Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes
7 April 2016
Jordi Grau-Moya
Felix Leibfried
Tim Genewein
Daniel A. Braun
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes"
10 / 10 papers shown
Title
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
13
0
0
04 Sep 2022
Model-Free Risk-Sensitive Reinforcement Learning
Grégoire Delétang
Jordi Grau-Moya
M. Kunesch
Tim Genewein
Rob Brekelmans
Shane Legg
Pedro A. Ortega
OOD
8
9
0
04 Nov 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
21
2
0
26 Mar 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Reinforcement Learning with Subspaces using Free Energy Paradigm
Milad Ghorbani
Reshad Hosseini
Seyed Pooya Shariatpanahi
M. N. Ahmadabadi
24
0
0
13 Dec 2020
Specialization in Hierarchical Learning Systems
Heinke Hihn
Daniel A. Braun
29
16
0
03 Nov 2020
An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
22
16
0
26 Jul 2019
Balancing Two-Player Stochastic Games with Soft Q-Learning
Jordi Grau-Moya
Felix Leibfried
Haitham Bou-Ammar
22
42
0
09 Feb 2018
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
Felix Leibfried
Jordi Grau-Moya
Haitham Bou-Ammar
30
24
0
06 Aug 2017
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach
Yinlam Chow
Aviv Tamar
Shie Mannor
Marco Pavone
73
310
0
06 Jun 2015
1