ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.08695
  4. Cited By
Learning to Refine Object Segments

Learning to Refine Object Segments

29 March 2016
Pedro H. O. Pinheiro
Nayeon Lee
R. Collobert
Piotr Dollàr
    SSeg
ArXivPDFHTML

Papers citing "Learning to Refine Object Segments"

44 / 144 papers shown
Title
Deep Crisp Boundaries: From Boundaries to Higher-level Tasks
Deep Crisp Boundaries: From Boundaries to Higher-level Tasks
Yupei Wang
Xin Zhao
Yin Li
Kaiqi Huang
33
77
0
08 Jan 2018
Object segmentation in depth maps with one user click and a
  synthetically trained fully convolutional network
Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network
Matthieu Grard
Romain Brégier
Florian Sella
Emmanuel Dellandrea
Liming Chen
32
12
0
04 Jan 2018
Instance Embedding Transfer to Unsupervised Video Object Segmentation
Instance Embedding Transfer to Unsupervised Video Object Segmentation
Siyang Li
Bryan Seybold
A. Vorobyov
Alireza Fathi
Qin Huang
C.-C. Jay Kuo
VOS
24
104
0
03 Jan 2018
Large-Scale Object Discovery and Detector Adaptation from Unlabeled
  Video
Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video
Aljosa Osep
P. Voigtlaender
Jonathon Luiten
Stefan Breuers
Bastian Leibe
ObjD
33
11
0
23 Dec 2017
Recurrent Pixel Embedding for Instance Grouping
Recurrent Pixel Embedding for Instance Grouping
Shu Kong
Charless C. Fowlkes
23
180
0
22 Dec 2017
Learning to Segment Moving Objects
Learning to Segment Moving Objects
P. Tokmakov
Cordelia Schmid
Alahari Karteek
VOS
36
97
0
01 Dec 2017
Real-time Semantic Image Segmentation via Spatial Sparsity
Real-time Semantic Image Segmentation via Spatial Sparsity
Zifeng Wu
Chunhua Shen
Anton Van Den Hengel
SSeg
39
64
0
01 Dec 2017
An Analysis of Scale Invariance in Object Detection - SNIP
An Analysis of Scale Invariance in Object Detection - SNIP
Bharat Singh
L. Davis
ObjD
35
736
0
22 Nov 2017
Squeeze-SegNet: A new fast Deep Convolutional Neural Network for
  Semantic Segmentation
Squeeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation
Géraldin Nanfack
Azeddine Elhassouny
Rachid Oulad Haj Thami
SSeg
41
22
0
15 Nov 2017
Rethinking Convolutional Semantic Segmentation Learning
Rethinking Convolutional Semantic Segmentation Learning
Mrinal Haloi
BDL
32
4
0
22 Oct 2017
Video Object Segmentation Without Temporal Information
Video Object Segmentation Without Temporal Information
Kevis-Kokitsi Maninis
Sergi Caelles
Yuhua Chen
Jordi Pont-Tuset
Laura Leal-Taixé
Daniel Cremers
Luc Van Gool
VOS
29
338
0
18 Sep 2017
VQS: Linking Segmentations to Questions and Answers for Supervised
  Attention in VQA and Question-Focused Semantic Segmentation
VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation
Chuang Gan
Yandong Li
Haoxiang Li
Chen Sun
Boqing Gong
27
126
0
15 Aug 2017
An Error Detection and Correction Framework for Connectomics
An Error Detection and Correction Framework for Connectomics
J. Zung
Ignacio Tartavull
Kisuk Lee
H. S. Seung
3DV
30
44
0
08 Aug 2017
Semantic Instance Segmentation with a Discriminative Loss Function
Semantic Instance Segmentation with a Discriminative Loss Function
Bert De Brabandere
D. Neven
Luc Van Gool
SSeg
57
443
0
08 Aug 2017
Flow-free Video Object Segmentation
Flow-free Video Object Segmentation
Aditya Vora
Shanmuganathan Raman
VOS
9
2
0
29 Jun 2017
Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple
  Objects
Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple Objects
Martin Rünz
Lourdes Agapito
VOT
31
209
0
20 Jun 2017
Superhuman Accuracy on the SNEMI3D Connectomics Challenge
Superhuman Accuracy on the SNEMI3D Connectomics Challenge
Kisuk Lee
J. Zung
Peter H. Li
Viren Jain
H. S. Seung
3DV
17
266
0
31 May 2017
A Review on Deep Learning Techniques Applied to Semantic Segmentation
A Review on Deep Learning Techniques Applied to Semantic Segmentation
Alberto Garcia-Garcia
Sergio Orts
Sergiu Oprea
Victor Villena-Martinez
Jose Garcia-Rodriguez
3DV
SSeg
34
1,267
0
22 Apr 2017
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
Siyuan Qiao
Wei Shen
Weichao Qiu
Chenxi Liu
Alan Yuille
22
36
0
22 Apr 2017
Reformulating Level Sets as Deep Recurrent Neural Network Approach to
  Semantic Segmentation
Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation
Ngan Le
Kha Gia Quach
Khoa Luu
Marios Savvides
Chenchen Zhu
24
71
0
12 Apr 2017
Unsupervised learning from video to detect foreground objects in single
  images
Unsupervised learning from video to detect foreground objects in single images
Ioana Croitoru
Simion-Vlad Bogolin
Marius Leordeanu
OCL
23
57
0
31 Mar 2017
Image-based Localization using Hourglass Networks
Image-based Localization using Hourglass Networks
Iaroslav Melekhov
Juha Ylioinas
Arno Solin
Esa Rahtu
24
195
0
23 Mar 2017
Algorithms for Semantic Segmentation of Multispectral Remote Sensing
  Imagery using Deep Learning
Algorithms for Semantic Segmentation of Multispectral Remote Sensing Imagery using Deep Learning
Ronald Kemker
C. Salvaggio
Christopher Kanan
36
450
0
19 Mar 2017
Deep Value Networks Learn to Evaluate and Iteratively Refine Structured
  Outputs
Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs
Michael Gygli
Mohammad Norouzi
A. Angelova
TDI
24
68
0
13 Mar 2017
All You Need is Beyond a Good Init: Exploring Better Solution for
  Training Extremely Deep Convolutional Neural Networks with Orthonormality and
  Modulation
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation
Di Xie
Jiang Xiong
Shiliang Pu
19
181
0
06 Mar 2017
Zoom Out-and-In Network with Recursive Training for Object Proposal
Zoom Out-and-In Network with Recursive Training for Object Proposal
Hongyang Li
Yu Liu
Wanli Ouyang
Xiaogang Wang
ObjD
33
23
0
19 Feb 2017
Beyond Skip Connections: Top-Down Modulation for Object Detection
Beyond Skip Connections: Top-Down Modulation for Object Detection
Abhinav Shrivastava
Rahul Sukthankar
Jitendra Malik
Abhinav Gupta
ObjD
27
320
0
20 Dec 2016
Learning Features by Watching Objects Move
Learning Features by Watching Objects Move
Deepak Pathak
Ross B. Girshick
Piotr Dollár
Trevor Darrell
Bharath Hariharan
SSL
VOS
OCL
36
522
0
19 Dec 2016
Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection
Nayeon Lee
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
186
21,819
0
09 Dec 2016
Classification With an Edge: Improving Semantic Image Segmentation with
  Boundary Detection
Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection
D. Marmanis
Konrad Schindler
Jan Dirk Wegner
S. Galliani
Mihai Datcu
Uwe Stilla
37
603
0
05 Dec 2016
Object Detection Free Instance Segmentation With Labeling
  Transformations
Object Detection Free Instance Segmentation With Labeling Transformations
Long Jin
Zeyu Chen
Z. Tu
ISeg
23
16
0
28 Nov 2016
Deep Watershed Transform for Instance Segmentation
Deep Watershed Transform for Instance Segmentation
Min Bai
R. Urtasun
ISeg
SSeg
24
520
0
24 Nov 2016
InstanceCut: from Edges to Instances with MultiCut
InstanceCut: from Edges to Instances with MultiCut
Alexander Kirillov
Evgeny Levinkov
Bjoern Andres
Bogdan Savchynskyy
Carsten Rother
SSeg
26
250
0
24 Nov 2016
Straight to Shapes: Real-time Detection of Encoded Shapes
Straight to Shapes: Real-time Detection of Encoded Shapes
Saumya Jetley
Michael Sapienza
Stuart Golodetz
Philip Torr
ObjD
17
50
0
23 Nov 2016
Fully Convolutional Instance-aware Semantic Segmentation
Fully Convolutional Instance-aware Semantic Segmentation
Yi Li
Haozhi Qi
Jifeng Dai
Xiangyang Ji
Yichen Wei
ISeg
SSeg
44
1,001
0
23 Nov 2016
Gland Instance Segmentation Using Deep Multichannel Neural Networks
Gland Instance Segmentation Using Deep Multichannel Neural Networks
Yan Xu
Yang Li
Yipei Wang
Mingyuan Liu
Yubo Fan
M. Lai
E. Chang
MedIm
42
163
0
21 Nov 2016
One-Shot Video Object Segmentation
One-Shot Video Object Segmentation
Sergi Caelles
Kevis-Kokitsi Maninis
Jordi Pont-Tuset
Laura Leal-Taixé
Daniel Cremers
Luc Van Gool
VOS
14
909
0
16 Nov 2016
Convolutional Oriented Boundaries
Convolutional Oriented Boundaries
Kevis-Kokitsi Maninis
Jordi Pont-Tuset
Pablo Arbelaez
Luc Van Gool
13
231
0
09 Aug 2016
Salient Object Subitizing
Salient Object Subitizing
Jianming Zhang
Shugao Ma
M. Sameki
Stan Sclaroff
Margrit Betke
Zhe-nan Lin
Xiaohui Shen
Brian L. Price
R. Měch
23
115
0
26 Jul 2016
DeepProposals: Hunting Objects and Actions by Cascading Deep
  Convolutional Layers
DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers
Amir Ghodrati
Ali Diba
M. Pedersoli
Tinne Tuytelaars
Luc Van Gool
ObjD
16
20
0
15 Jun 2016
Attend Refine Repeat: Active Box Proposal Generation via In-Out
  Localization
Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
Spyridon Gidaris
N. Komodakis
ObjD
24
79
0
14 Jun 2016
A MultiPath Network for Object Detection
A MultiPath Network for Object Detection
Sergey Zagoruyko
Adam Lerer
Nayeon Lee
Pedro H. O. Pinheiro
Sam Gross
Soumith Chintala
Piotr Dollár
ObjD
30
213
0
07 Apr 2016
Simple Does It: Weakly Supervised Instance and Semantic Segmentation
Simple Does It: Weakly Supervised Instance and Semantic Segmentation
Anna Khoreva
Rodrigo Benenson
J. Hosang
Matthias Hein
Bernt Schiele
WSOD
VLM
ISeg
18
741
0
24 Mar 2016
Semantic Amodal Segmentation
Semantic Amodal Segmentation
Yan Zhu
Yuandong Tian
Dimitris N. Metaxas
Piotr Dollár
VLM
25
170
0
04 Sep 2015
Previous
123