ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.05412
  4. Cited By
Online semi-parametric learning for inverse dynamics modeling
v1v2 (latest)

Online semi-parametric learning for inverse dynamics modeling

17 March 2016
D. Romeres
Mattia Zorzi
Raffaello Camoriano
A. Chiuso
ArXiv (abs)PDFHTML

Papers citing "Online semi-parametric learning for inverse dynamics modeling"

13 / 13 papers shown
Title
A Black-Box Physics-Informed Estimator based on Gaussian Process
  Regression for Robot Inverse Dynamics Identification
A Black-Box Physics-Informed Estimator based on Gaussian Process Regression for Robot Inverse Dynamics Identification
Giulio Giacomuzzo
Alberto Dalla Libera
Diego Romeres
R. Carli
81
2
0
10 Oct 2023
Combining Physics and Deep Learning to learn Continuous-Time Dynamics
  Models
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINNAI4CE
97
42
0
05 Oct 2021
Lightweight Distributed Gaussian Process Regression for Online Machine
  Learning
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
50
4
0
11 May 2021
Model-Based Policy Search Using Monte Carlo Gradient Estimation with
  Real Systems Application
Model-Based Policy Search Using Monte Carlo Gradient Estimation with Real Systems Application
Fabio Amadio
Alberto Dalla Libera
R. Antonello
D. Nikovski
R. Carli
Diego Romeres
42
29
0
28 Jan 2021
Continual Learning: Tackling Catastrophic Forgetting in Deep Neural
  Networks with Replay Processes
Continual Learning: Tackling Catastrophic Forgetting in Deep Neural Networks with Replay Processes
Timothée Lesort
CLL
74
22
0
01 Jul 2020
Multi-Sparse Gaussian Process: Learning based Semi-Parametric Control
Multi-Sparse Gaussian Process: Learning based Semi-Parametric Control
Mouhyemen Khan
Akash Patel
A. Chatterjee
29
2
0
03 Mar 2020
Model-Based Reinforcement Learning for Physical Systems Without Velocity
  and Acceleration Measurements
Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements
Alberto Dalla Libera
Diego Romeres
Devesh K. Jha
B. Yerazunis
D. Nikovski
OffRL
123
12
0
25 Feb 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
75
1
0
11 Dec 2019
Online Simultaneous Semi-Parametric Dynamics Model Learning
Online Simultaneous Semi-Parametric Dynamics Model Learning
Joshua R. Smith
M. Mistry
61
8
0
09 Oct 2019
Safe Approximate Dynamic Programming Via Kernelized Lipschitz Estimation
Safe Approximate Dynamic Programming Via Kernelized Lipschitz Estimation
Ankush Chakrabarty
Devesh K. Jha
G. Buzzard
Yebin Wang
K. Vamvoudakis
50
26
0
03 Jul 2019
Continual Learning for Robotics: Definition, Framework, Learning
  Strategies, Opportunities and Challenges
Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges
Timothée Lesort
Vincenzo Lomonaco
Andrei Stoian
Davide Maltoni
David Filliat
Natalia Díaz Rodríguez
CLL
120
250
0
29 Jun 2019
Derivative-free online learning of inverse dynamics models
Derivative-free online learning of inverse dynamics models
D. Romeres
Mattia Zorzi
Raffaello Camoriano
Silvio Traversaro
A. Chiuso
69
33
0
13 Sep 2018
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models
  for Navigating in a Circular Maze
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze
Diego Romeres
Devesh K. Jha
Alberto Dalla Libera
W. Yerazunis
D. Nikovski
90
28
0
13 Sep 2018
1