Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.05201
Cited By
v1
v2 (latest)
Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units
16 March 2016
Wenling Shang
Kihyuk Sohn
Diogo Almeida
Honglak Lee
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units"
21 / 171 papers shown
Title
Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural Networks
Fréderic Godin
Jonas Degrave
J. Dambre
W. D. Neve
MU
36
47
0
25 Jul 2017
Kafnets: kernel-based non-parametric activation functions for neural networks
Simone Scardapane
S. Van Vaerenbergh
Simone Totaro
A. Uncini
36
12
0
13 Jul 2017
Towards lightweight convolutional neural networks for object detection
Dmitriy Anisimov
T. Khanova
ObjD
84
40
0
05 Jul 2017
Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems
J. C. Ye
Yoseob Han
Eunju Cha
114
16
0
03 Jul 2017
A Useful Motif for Flexible Task Learning in an Embodied Two-Dimensional Visual Environment
Kevin T. Feigelis
Daniel L. K. Yamins
34
0
0
22 Jun 2017
DiracNets: Training Very Deep Neural Networks Without Skip-Connections
Sergey Zagoruyko
N. Komodakis
UQCV
OOD
79
119
0
01 Jun 2017
Towards Understanding the Invertibility of Convolutional Neural Networks
A. Gilbert
Yi Zhang
Kibok Lee
Y. Zhang
Honglak Lee
89
64
0
24 May 2017
Probabilistic Image Colorization
Amelie Royer
Alexander Kolesnikov
Christoph H. Lampert
68
44
0
11 May 2017
The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
A. Gruslys
Will Dabney
M. G. Azar
Bilal Piot
Marc G. Bellemare
Rémi Munos
76
58
0
15 Apr 2017
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation
Di Xie
Jiang Xiong
Shiliang Pu
147
183
0
06 Mar 2017
The Shattered Gradients Problem: If resnets are the answer, then what is the question?
David Balduzzi
Marcus Frean
Lennox Leary
J. P. Lewis
Kurt Wan-Duo Ma
Brian McWilliams
ODL
75
406
0
28 Feb 2017
Steerable CNNs
Taco S. Cohen
Max Welling
BDL
147
499
0
27 Dec 2016
PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
Sanghoon Hong
Byungseok Roh
Kye-Hyeon Kim
Yeongjae Cheon
Minje Park
ObjD
77
83
0
23 Nov 2016
Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks
David Balduzzi
Brian McWilliams
T. Butler-Yeoman
74
29
0
07 Nov 2016
Doubly Convolutional Neural Networks
Shuangfei Zhai
Yu Cheng
Weining Lu
Zhongfei Zhang
OOD
3DV
71
63
0
30 Oct 2016
Maxmin convolutional neural networks for image classification
Michael Blot
Matthieu Cord
Nicolas Thome
44
45
0
25 Oct 2016
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
Kye-Hyeon Kim
Sanghoon Hong
Byungseok Roh
Yeongjae Cheon
Minje Park
ObjD
VLM
91
208
0
29 Aug 2016
Softplus Regressions and Convex Polytopes
Mingyuan Zhou
78
16
0
23 Aug 2016
Every Filter Extracts A Specific Texture In Convolutional Neural Networks
Zhiqiang Xia
Ce Zhu
Z. Wang
Qi Guo
Yipeng Liu
FAtt
42
2
0
15 Aug 2016
Mapping Auto-context Decision Forests to Deep ConvNets for Semantic Segmentation
D. L. Richmond
Dagmar Kainmüller
M. Yang
E. Myers
Carsten Rother
SSeg
135
14
0
27 Jul 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
553
43,400
0
11 Feb 2015
Previous
1
2
3
4