ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00389
  4. Cited By
Multi-Information Source Optimization
v1v2 (latest)

Multi-Information Source Optimization

1 March 2016
Matthias Poloczek
Jialei Wang
P. Frazier
ArXiv (abs)PDFHTML

Papers citing "Multi-Information Source Optimization"

50 / 68 papers shown
Title
Interim Report on Human-Guided Adaptive Hyperparameter Optimization with Multi-Fidelity Sprints
Interim Report on Human-Guided Adaptive Hyperparameter Optimization with Multi-Fidelity Sprints
Michael Kamfonas
71
0
0
14 May 2025
Optimal Multi-Fidelity Best-Arm Identification
Optimal Multi-Fidelity Best-Arm Identification
Riccardo Poiani
Rémy Degenne
Emilie Kaufmann
Alberto Maria Metelli
Marcello Restelli
179
2
0
05 Jun 2024
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided
  by a Function Prior
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior
Shuyu Cheng
Yibo Miao
Yinpeng Dong
Xiao Yang
Xiao-Shan Gao
Jun Zhu
AAML
104
5
0
29 May 2024
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
Wei-Ting Tang
J. Paulson
77
1
0
13 May 2024
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
105
5
0
14 Mar 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
130
2
0
22 Feb 2024
Bounce: Reliable High-Dimensional Bayesian Optimization for
  Combinatorial and Mixed Spaces
Bounce: Reliable High-Dimensional Bayesian Optimization for Combinatorial and Mixed Spaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
128
13
0
02 Jul 2023
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
A. Maurais
Terrence Alsup
Benjamin Peherstorfer
Youssef Marzouk
102
7
0
31 Jan 2023
GAR: Generalized Autoregression for Multi-Fidelity Fusion
GAR: Generalized Autoregression for Multi-Fidelity Fusion
Yuxin Wang
Zhengrong Xing
Wei W. Xing
AI4CE
56
3
0
13 Jan 2023
On Noisy Evaluation in Federated Hyperparameter Tuning
On Noisy Evaluation in Federated Hyperparameter Tuning
Kevin Kuo
Pratiksha Thaker
M. Khodak
John Nguyen
Daniel Jiang
Ameet Talwalkar
Virginia Smith
FedML
123
8
0
17 Dec 2022
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
P. Mikkola
Julien Martinelli
Louis Filstroff
Samuel Kaski
108
11
0
25 Oct 2022
Non-Myopic Multifidelity Bayesian Optimization
Non-Myopic Multifidelity Bayesian Optimization
Francesco Di Fiore
L. Mainini
108
3
0
13 Jul 2022
On Provably Robust Meta-Bayesian Optimization
On Provably Robust Meta-Bayesian Optimization
Zhongxiang Dai
Yizhou Chen
Haibin Yu
K. H. Low
Patrick Jaillet
AAML
65
10
0
14 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Tengjiao Wang
76
15
0
06 Jun 2022
Towards Learning Universal Hyperparameter Optimizers with Transformers
Towards Learning Universal Hyperparameter Optimizers with Transformers
Yutian Chen
Xingyou Song
Chansoo Lee
Zehao Wang
Qiuyi Zhang
...
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
105
65
0
26 May 2022
Fair and Green Hyperparameter Optimization via Multi-objective and
  Multiple Information Source Bayesian Optimization
Fair and Green Hyperparameter Optimization via Multi-objective and Multiple Information Source Bayesian Optimization
Antonio Candelieri
Andrea Ponti
Francesco Archetti
63
18
0
18 May 2022
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
Jiajun He
Austin Tripp
José Miguel Hernández-Lobato
66
23
0
05 May 2022
SnAKe: Bayesian Optimization with Pathwise Exploration
SnAKe: Bayesian Optimization with Pathwise Exploration
Jose Pablo Folch
Shiqiang Zhang
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
88
20
0
31 Jan 2022
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Jixiang Li
Ji Liu
Ce Zhang
Tengjiao Wang
64
26
0
18 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
102
36
0
02 Jan 2022
Transfer Learning with Gaussian Processes for Bayesian Optimization
Transfer Learning with Gaussian Processes for Bayesian Optimization
Petru Tighineanu
Kathrin Skubch
P. Baireuther
Attila Reiss
Felix Berkenkamp
Julia Vinogradska
62
33
0
22 Nov 2021
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
116
39
0
04 Nov 2021
Pre-trained Gaussian processes for Bayesian optimization
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
151
46
0
16 Sep 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
73
8
0
05 Aug 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Tengjiao Wang
LRM
61
46
0
19 Jul 2021
Nonmyopic Multifidelity Active Search
Nonmyopic Multifidelity Active Search
Quan Nguyen
Arghavan Modiri
Roman Garnett
127
1
0
11 Jun 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
88
23
0
10 Jun 2021
OpenBox: A Generalized Black-box Optimization Service
OpenBox: A Generalized Black-box Optimization Service
Yang Li
Yu Shen
Wentao Zhang
Yuan-Wei Chen
Huaijun Jiang
...
Jinyang Gao
Wentao Wu
Zhi-Xin Yang
Ce Zhang
Tengjiao Wang
81
77
0
01 Jun 2021
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
102
304
0
20 Apr 2021
Problem-fluent models for complex decision-making in autonomous
  materials research
Problem-fluent models for complex decision-making in autonomous materials research
Soojung Baek
Kristofer G. Reyes
AI4CE
48
2
0
13 Mar 2021
Warm Starting CMA-ES for Hyperparameter Optimization
Warm Starting CMA-ES for Hyperparameter Optimization
Masahiro Nomura
Shuhei Watanabe
Youhei Akimoto
Yoshihiko Ozaki
Masaki Onishi
95
43
0
13 Dec 2020
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Tengjiao Wang
83
34
0
08 Dec 2020
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
Yang Li
Yu Shen
Jiawei Jiang
Jinyang Gao
Ce Zhang
Tengjiao Wang
71
28
0
05 Dec 2020
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Deep Multi-Fidelity Active Learning of High-dimensional Outputs
Shibo Li
Robert M. Kirby
Shandian Zhe
AI4CE
57
28
0
02 Dec 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
145
113
0
20 Oct 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep
  Reinforcement Learning
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
75
13
0
29 Jul 2020
Sequential design of multi-fidelity computer experiments: maximizing the
  rate of stepwise uncertainty reduction
Sequential design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction
Rémi Stroh
Julien Bect
S. Demeyer
N. Fischer
Damien Marquis
E. Vázquez
40
13
0
27 Jul 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
140
285
0
08 Jul 2020
Learning excursion sets of vector-valued Gaussian random fields for
  autonomous ocean sampling
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
T. Fossum
Cédric Travelletti
J. Eidsvik
D. Ginsbourger
K. Rajan
36
18
0
07 Jul 2020
Multi-Fidelity Bayesian Optimization via Deep Neural Networks
Multi-Fidelity Bayesian Optimization via Deep Neural Networks
Shibo Li
Wei W. Xing
Mike Kirby
Shandian Zhe
75
54
0
06 Jul 2020
BOSH: Bayesian Optimization by Sampling Hierarchically
BOSH: Bayesian Optimization by Sampling Hierarchically
Henry B. Moss
David S. Leslie
Paul Rayson
66
8
0
02 Jul 2020
Green Machine Learning via Augmented Gaussian Processes and
  Multi-Information Source Optimization
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
R. Perego
Francesco Archetti
47
19
0
25 Jun 2020
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
88
34
0
22 Jun 2020
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
62
5
0
24 Mar 2020
Cost-aware Bayesian Optimization
Cost-aware Bayesian Optimization
E. Lee
Valerio Perrone
Cédric Archambeau
Matthias Seeger
157
58
0
22 Mar 2020
Why Non-myopic Bayesian Optimization is Promising and How Far Should We
  Look-ahead? A Study via Rollout
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout
Xubo Yue
Raed Al Kontar
104
38
0
04 Nov 2019
Dynamic Subgoal-based Exploration via Bayesian Optimization
Dynamic Subgoal-based Exploration via Bayesian Optimization
Yijia Wang
Matthias Poloczek
Daniel R. Jiang
91
3
0
21 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
75
93
0
14 Oct 2019
Active learning for level set estimation under cost-dependent input
  uncertainty
Active learning for level set estimation under cost-dependent input uncertainty
Yu Inatsu
Masayuki Karasuyama
Keiichi Inoue
Ichiro Takeuchi
42
5
0
13 Sep 2019
Bayesian Optimization with Binary Auxiliary Information
Bayesian Optimization with Binary Auxiliary Information
Yehong Zhang
Zhongxiang Dai
K. H. Low
64
26
0
17 Jun 2019
12
Next