ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.08557
  4. Cited By
Multiplier-less Artificial Neurons Exploiting Error Resiliency for
  Energy-Efficient Neural Computing

Multiplier-less Artificial Neurons Exploiting Error Resiliency for Energy-Efficient Neural Computing

27 February 2016
Syed Shakib Sarwar
Swagath Venkataramani
A. Raghunathan
Kaushik Roy
ArXivPDFHTML

Papers citing "Multiplier-less Artificial Neurons Exploiting Error Resiliency for Energy-Efficient Neural Computing"

8 / 8 papers shown
Title
Approximate Computing and the Efficient Machine Learning Expedition
Approximate Computing and the Efficient Machine Learning Expedition
J. Henkel
Hai Helen Li
A. Raghunathan
M. Tahoori
Swagath Venkataramani
Xiaoxuan Yang
Georgios Zervakis
28
17
0
02 Oct 2022
The Effects of Approximate Multiplication on Convolutional Neural
  Networks
The Effects of Approximate Multiplication on Convolutional Neural Networks
Min Soo Kim
A. D. Del Barrio
Hyunjin Kim
N. Bagherzadeh
18
46
0
20 Jul 2020
Automated Circuit Approximation Method Driven by Data Distribution
Automated Circuit Approximation Method Driven by Data Distribution
Z. Vašíček
Vojtěch Mrázek
Lukás Sekanina
15
17
0
11 Mar 2019
ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error
  Resilience for Energy Efficient Deep Neural Network Accelerators
ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Neural Network Accelerators
Jeff Zhang
Kartheek Rangineni
Zahra Ghodsi
S. Garg
36
118
0
11 Feb 2018
LightNN: Filling the Gap between Conventional Deep Neural Networks and
  Binarized Networks
LightNN: Filling the Gap between Conventional Deep Neural Networks and Binarized Networks
Ruizhou Ding
Z. Liu
Rongye Shi
Diana Marculescu
R. D. Blanton
MQ
24
37
0
02 Dec 2017
A Survey of Neuromorphic Computing and Neural Networks in Hardware
A Survey of Neuromorphic Computing and Neural Networks in Hardware
Catherine D. Schuman
T. Potok
Robert M. Patton
J. Birdwell
Mark E. Dean
Garrett S. Rose
J. Plank
54
687
0
19 May 2017
Gabor Filter Assisted Energy Efficient Fast Learning Convolutional
  Neural Networks
Gabor Filter Assisted Energy Efficient Fast Learning Convolutional Neural Networks
Syed Shakib Sarwar
Priyadarshini Panda
Kaushik Roy
CVBM
24
100
0
12 May 2017
Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural
  Networks
Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks
Hokchhay Tann
S. Hashemi
Iris Bahar
Sherief Reda
MQ
35
74
0
11 May 2017
1