ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07905
  4. Cited By
Thompson Sampling is Asymptotically Optimal in General Environments

Thompson Sampling is Asymptotically Optimal in General Environments

25 February 2016
Jan Leike
Tor Lattimore
Laurent Orseau
Marcus Hutter
ArXivPDFHTML

Papers citing "Thompson Sampling is Asymptotically Optimal in General Environments"

7 / 7 papers shown
Title
On the Convergence of Bounded Agents
On the Convergence of Bounded Agents
David Abel
André Barreto
Hado van Hasselt
Benjamin Van Roy
Doina Precup
Satinder Singh
45
4
0
20 Jul 2023
Cost Aware Asynchronous Multi-Agent Active Search
Cost Aware Asynchronous Multi-Agent Active Search
Arundhati Banerjee
Ramina Ghods
J. Schneider
41
0
0
05 Oct 2022
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
32
373
0
08 Jun 2018
Taming Non-stationary Bandits: A Bayesian Approach
Taming Non-stationary Bandits: A Bayesian Approach
Vishnu Raj
Sheetal Kalyani
43
76
0
31 Jul 2017
Universal Reinforcement Learning Algorithms: Survey and Experiments
Universal Reinforcement Learning Algorithms: Survey and Experiments
John Aslanides
Jan Leike
Marcus Hutter
OffRL
39
19
0
30 May 2017
Nonparametric General Reinforcement Learning
Nonparametric General Reinforcement Learning
Jan Leike
OffRL
46
26
0
28 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
75
1,462
0
06 Jun 2016
1