ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07043
  4. Cited By
Auditing Black-box Models for Indirect Influence

Auditing Black-box Models for Indirect Influence

23 February 2016
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
    TDI
    MLAU
ArXivPDFHTML

Papers citing "Auditing Black-box Models for Indirect Influence"

49 / 49 papers shown
Title
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
Puheng Li
James Zou
Linjun Zhang
FaML
98
4
0
13 Mar 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
86
16
0
10 Jan 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
47
0
0
29 Oct 2024
Evaluating and Mitigating Discrimination in Language Model Decisions
Evaluating and Mitigating Discrimination in Language Model Decisions
Alex Tamkin
Amanda Askell
Liane Lovitt
Esin Durmus
Nicholas Joseph
Shauna Kravec
Karina Nguyen
Jared Kaplan
Deep Ganguli
38
68
0
06 Dec 2023
Auditing large language models: a three-layered approach
Auditing large language models: a three-layered approach
Jakob Mokander
Jonas Schuett
Hannah Rose Kirk
Luciano Floridi
AILaw
MLAU
52
196
0
16 Feb 2023
"If it didn't happen, why would I change my decision?": How Judges
  Respond to Counterfactual Explanations for the Public Safety Assessment
"If it didn't happen, why would I change my decision?": How Judges Respond to Counterfactual Explanations for the Public Safety Assessment
Yaniv Yacoby
Ben Green
Christopher L. Griffin
Finale Doshi Velez
21
16
0
11 May 2022
Accountability in an Algorithmic Society: Relationality, Responsibility,
  and Robustness in Machine Learning
Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning
A. Feder Cooper
Emanuel Moss
Benjamin Laufer
Helen Nissenbaum
MLAU
32
85
0
10 Feb 2022
Modeling Implicit Bias with Fuzzy Cognitive Maps
Modeling Implicit Bias with Fuzzy Cognitive Maps
Gonzalo Nápoles
Isel Grau
Leonardo Concepción
Lisa Koutsoviti Koumeri
João Paulo Papa
18
26
0
23 Dec 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Cohort Shapley value for algorithmic fairness
Cohort Shapley value for algorithmic fairness
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
18
14
0
15 May 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive
  Counterfactuals
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
27
105
0
22 Mar 2021
Software-Supported Audits of Decision-Making Systems: Testing Google and
  Facebook's Political Advertising Policies
Software-Supported Audits of Decision-Making Systems: Testing Google and Facebook's Political Advertising Policies
J. N. Matias
Austin Hounsel
Nick Feamster
MLAU
19
15
0
26 Feb 2021
Explaining Black-box Models for Biomedical Text Classification
Explaining Black-box Models for Biomedical Text Classification
M. Moradi
Matthias Samwald
41
21
0
20 Dec 2020
Self-Explaining Structures Improve NLP Models
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
46
38
0
03 Dec 2020
Explainable Predictive Process Monitoring
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
19
60
0
04 Aug 2020
Relative Feature Importance
Relative Feature Importance
Gunnar Konig
Christoph Molnar
B. Bischl
Moritz Grosse-Wentrup
32
48
0
16 Jul 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Model Explanations with Differential Privacy
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
An analysis on the use of autoencoders for representation learning:
  fundamentals, learning task case studies, explainability and challenges
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
27
51
0
21 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Addressing multiple metrics of group fairness in data-driven decision
  making
Addressing multiple metrics of group fairness in data-driven decision making
M. Miron
Songül Tolan
Emilia Gómez
Carlos Castillo
FaML
19
8
0
10 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
43
301
0
08 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Does Object Recognition Work for Everyone?
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
Laurens van der Maaten
45
262
0
06 Jun 2019
The Audio Auditor: User-Level Membership Inference in Internet of Things
  Voice Services
The Audio Auditor: User-Level Membership Inference in Internet of Things Voice Services
Yuantian Miao
Minhui Xue
Chao Chen
Lei Pan
Jinchao Zhang
Benjamin Zi Hao Zhao
Dali Kaafar
Yang Xiang
21
34
0
17 May 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a
  Black-box Model
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
38
19
0
10 May 2019
Repairing without Retraining: Avoiding Disparate Impact with
  Counterfactual Distributions
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
Hao Wang
Berk Ustun
Flavio du Pin Calmon
FaML
33
83
0
29 Jan 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
25
135
0
24 Jan 2019
The Price of Fair PCA: One Extra Dimension
The Price of Fair PCA: One Extra Dimension
Samira Samadi
U. Tantipongpipat
Jamie Morgenstern
Mohit Singh
Santosh Vempala
FaML
22
154
0
31 Oct 2018
Hunting for Discriminatory Proxies in Linear Regression Models
Hunting for Discriminatory Proxies in Linear Regression Models
Samuel Yeom
Anupam Datta
Matt Fredrikson
22
19
0
16 Oct 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
15
80
0
19 Jun 2018
Understanding Community Structure in Layered Neural Networks
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
19
22
0
13 Apr 2018
Performance evaluation and hyperparameter tuning of statistical and
  machine-learning models using spatial data
Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data
P. Schratz
Jannes Muenchow
E. Iturritxa
Jakob Richter
A. Brenning
28
320
0
29 Mar 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and
  Challenges
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
A comparative study of fairness-enhancing interventions in machine
  learning
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
23
636
0
13 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An
  Evaluation of the Human-Interpretability of Explanation
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
41
241
0
02 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine
  Learning
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
21
100
0
22 Dec 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural
  Networks by Regularizing their Input Gradients
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
37
677
0
26 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
28
281
0
16 Nov 2017
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model
  Distillation
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
28
180
0
17 Oct 2017
A Convex Framework for Fair Regression
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
23
341
0
07 Jun 2017
EVE: Explainable Vector Based Embedding Technique Using Wikipedia
EVE: Explainable Vector Based Embedding Technique Using Wikipedia
M. A. Qureshi
Derek Greene
30
33
0
22 Feb 2017
A causal framework for discovering and removing direct and indirect
  discrimination
A causal framework for discovering and removing direct and indirect discrimination
Lu Zhang
Yongkai Wu
Xintao Wu
CML
24
172
0
22 Nov 2016
Achieving non-discrimination in data release
Achieving non-discrimination in data release
Lu Zhang
Yongkai Wu
Xintao Wu
FaML
18
68
0
22 Nov 2016
Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box
  Models
Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box Models
Julius Adebayo
Lalana Kagal
MLAU
12
65
0
15 Nov 2016
1