Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.07043
Cited By
Auditing Black-box Models for Indirect Influence
23 February 2016
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
TDI
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Auditing Black-box Models for Indirect Influence"
49 / 49 papers shown
Title
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
Puheng Li
James Zou
Linjun Zhang
FaML
98
4
0
13 Mar 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
86
16
0
10 Jan 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
47
0
0
29 Oct 2024
Evaluating and Mitigating Discrimination in Language Model Decisions
Alex Tamkin
Amanda Askell
Liane Lovitt
Esin Durmus
Nicholas Joseph
Shauna Kravec
Karina Nguyen
Jared Kaplan
Deep Ganguli
38
68
0
06 Dec 2023
Auditing large language models: a three-layered approach
Jakob Mokander
Jonas Schuett
Hannah Rose Kirk
Luciano Floridi
AILaw
MLAU
52
196
0
16 Feb 2023
"If it didn't happen, why would I change my decision?": How Judges Respond to Counterfactual Explanations for the Public Safety Assessment
Yaniv Yacoby
Ben Green
Christopher L. Griffin
Finale Doshi Velez
21
16
0
11 May 2022
Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning
A. Feder Cooper
Emanuel Moss
Benjamin Laufer
Helen Nissenbaum
MLAU
32
85
0
10 Feb 2022
Modeling Implicit Bias with Fuzzy Cognitive Maps
Gonzalo Nápoles
Isel Grau
Leonardo Concepción
Lisa Koutsoviti Koumeri
João Paulo Papa
18
26
0
23 Dec 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Cohort Shapley value for algorithmic fairness
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
18
14
0
15 May 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
27
105
0
22 Mar 2021
Software-Supported Audits of Decision-Making Systems: Testing Google and Facebook's Political Advertising Policies
J. N. Matias
Austin Hounsel
Nick Feamster
MLAU
19
15
0
26 Feb 2021
Explaining Black-box Models for Biomedical Text Classification
M. Moradi
Matthias Samwald
41
21
0
20 Dec 2020
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
46
38
0
03 Dec 2020
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
19
60
0
04 Aug 2020
Relative Feature Importance
Gunnar Konig
Christoph Molnar
B. Bischl
Moritz Grosse-Wentrup
32
48
0
16 Jul 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
27
51
0
21 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Addressing multiple metrics of group fairness in data-driven decision making
M. Miron
Songül Tolan
Emilia Gómez
Carlos Castillo
FaML
19
8
0
10 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
43
301
0
08 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
Laurens van der Maaten
45
262
0
06 Jun 2019
The Audio Auditor: User-Level Membership Inference in Internet of Things Voice Services
Yuantian Miao
Minhui Xue
Chao Chen
Lei Pan
Jinchao Zhang
Benjamin Zi Hao Zhao
Dali Kaafar
Yang Xiang
21
34
0
17 May 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
38
19
0
10 May 2019
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
Hao Wang
Berk Ustun
Flavio du Pin Calmon
FaML
33
83
0
29 Jan 2019
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
25
135
0
24 Jan 2019
The Price of Fair PCA: One Extra Dimension
Samira Samadi
U. Tantipongpipat
Jamie Morgenstern
Mohit Singh
Santosh Vempala
FaML
22
154
0
31 Oct 2018
Hunting for Discriminatory Proxies in Linear Regression Models
Samuel Yeom
Anupam Datta
Matt Fredrikson
22
19
0
16 Oct 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
15
80
0
19 Jun 2018
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
19
22
0
13 Apr 2018
Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data
P. Schratz
Jannes Muenchow
E. Iturritxa
Jakob Richter
A. Brenning
28
320
0
29 Mar 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
23
636
0
13 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
41
241
0
02 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
21
100
0
22 Dec 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
37
677
0
26 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
28
281
0
16 Nov 2017
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
28
180
0
17 Oct 2017
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
23
341
0
07 Jun 2017
EVE: Explainable Vector Based Embedding Technique Using Wikipedia
M. A. Qureshi
Derek Greene
30
33
0
22 Feb 2017
A causal framework for discovering and removing direct and indirect discrimination
Lu Zhang
Yongkai Wu
Xintao Wu
CML
24
172
0
22 Nov 2016
Achieving non-discrimination in data release
Lu Zhang
Yongkai Wu
Xintao Wu
FaML
18
68
0
22 Nov 2016
Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box Models
Julius Adebayo
Lalana Kagal
MLAU
12
65
0
15 Nov 2016
1