Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06709
Cited By
Distributed Deep Learning Using Synchronous Stochastic Gradient Descent
22 February 2016
Dipankar Das
Sasikanth Avancha
Dheevatsa Mudigere
K. Vaidyanathan
Srinivas Sridharan
Dhiraj D. Kalamkar
Bharat Kaul
Pradeep Dubey
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Deep Learning Using Synchronous Stochastic Gradient Descent"
33 / 33 papers shown
Title
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
34
25
0
24 Jan 2023
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
25
11
0
23 Apr 2021
Privacy and Trust Redefined in Federated Machine Learning
Pavlos Papadopoulos
Will Abramson
A. Hall
Nikolaos Pitropakis
William J. Buchanan
33
42
0
29 Mar 2021
GradPIM: A Practical Processing-in-DRAM Architecture for Gradient Descent
Heesu Kim
Hanmin Park
Taehyun Kim
Kwanheum Cho
Eojin Lee
Soojung Ryu
Hyuk-Jae Lee
Kiyoung Choi
Jinho Lee
24
36
0
15 Feb 2021
Sparse Communication for Training Deep Networks
Negar Foroutan
Martin Jaggi
FedML
30
16
0
19 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
44
79
0
17 Sep 2020
Enabling Compute-Communication Overlap in Distributed Deep Learning Training Platforms
Saeed Rashidi
Matthew Denton
Srinivas Sridharan
Sudarshan Srinivasan
Amoghavarsha Suresh
Jade Nie
T. Krishna
34
45
0
30 Jun 2020
A Distributed Trust Framework for Privacy-Preserving Machine Learning
Will Abramson
A. Hall
Pavlos Papadopoulos
Nikolaos Pitropakis
William J. Buchanan
14
20
0
03 Jun 2020
Array Languages Make Neural Networks Fast
Artjoms Šinkarovs
Hans-Nikolai Vießmann
S. Scholz
25
5
0
11 Dec 2019
Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited memory
Julien Herrmann
Olivier Beaumont
Lionel Eyraud-Dubois
J. Herrmann
Alexis Joly
Alena Shilova
BDL
31
29
0
27 Nov 2019
Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training
Saptadeep Pal
Eiman Ebrahimi
A. Zulfiqar
Yaosheng Fu
Victor Zhang
Szymon Migacz
D. Nellans
Puneet Gupta
34
55
0
30 Jul 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
A Distributed Synchronous SGD Algorithm with Global Top-
k
k
k
Sparsification for Low Bandwidth Networks
S. Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
40
135
0
14 Jan 2019
Bandwidth Reduction using Importance Weighted Pruning on Ring AllReduce
Zehua Cheng
Zhenghua Xu
22
8
0
06 Jan 2019
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
30
100
0
08 Dec 2018
Mini-batch Serialization: CNN Training with Inter-layer Data Reuse
Sangkug Lym
Armand Behroozi
W. Wen
Ge Li
Yongkee Kwon
M. Erez
17
25
0
30 Sep 2018
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
51
4,931
0
30 Jul 2018
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
41
2
0
04 Jun 2018
Revisiting Small Batch Training for Deep Neural Networks
Dominic Masters
Carlo Luschi
ODL
37
662
0
20 Apr 2018
On Scale-out Deep Learning Training for Cloud and HPC
Srinivas Sridharan
K. Vaidyanathan
Dhiraj D. Kalamkar
Dipankar Das
Mikhail E. Smorkalov
...
Dheevatsa Mudigere
Naveen Mellempudi
Sasikanth Avancha
Bharat Kaul
Pradeep Dubey
BDL
26
30
0
24 Jan 2018
Integrated Model, Batch and Domain Parallelism in Training Neural Networks
A. Gholami
A. Azad
Peter H. Jin
Kurt Keutzer
A. Buluç
26
82
0
12 Dec 2017
AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks
Aditya Devarakonda
Maxim Naumov
M. Garland
ODL
24
136
0
06 Dec 2017
Performance Modeling and Evaluation of Distributed Deep Learning Frameworks on GPUs
S. Shi
Qiang-qiang Wang
Xiaowen Chu
37
110
0
16 Nov 2017
SparCE: Sparsity aware General Purpose Core Extensions to Accelerate Deep Neural Networks
Sanchari Sen
Shubham Jain
Swagath Venkataramani
A. Raghunathan
24
30
0
07 Nov 2017
What does fault tolerant Deep Learning need from MPI?
Vinay C. Amatya
Abhinav Vishnu
Charles Siegel
J. Daily
28
19
0
11 Sep 2017
Spectral Norm Regularization for Improving the Generalizability of Deep Learning
Yuichi Yoshida
Takeru Miyato
46
325
0
31 May 2017
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
44
795
0
24 May 2017
Exploring the Design Space of Deep Convolutional Neural Networks at Large Scale
F. Iandola
3DV
26
18
0
20 Dec 2016
How to scale distributed deep learning?
Peter H. Jin
Qiaochu Yuan
F. Iandola
Kurt Keutzer
3DH
27
136
0
14 Nov 2016
Asynchronous Stochastic Gradient Descent with Delay Compensation
Shuxin Zheng
Qi Meng
Taifeng Wang
Wei Chen
Nenghai Yu
Zhiming Ma
Tie-Yan Liu
32
312
0
27 Sep 2016
Benchmarking State-of-the-Art Deep Learning Software Tools
S. Shi
Qiang-qiang Wang
Pengfei Xu
Xiaowen Chu
BDL
19
327
0
25 Aug 2016
Boda-RTC: Productive Generation of Portable, Efficient Code for Convolutional Neural Networks on Mobile Computing Platforms
Matthew W. Moskewicz
F. Iandola
Kurt Keutzer
14
8
0
01 Jun 2016
1