ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06693
  4. Cited By
Preconditioning Kernel Matrices

Preconditioning Kernel Matrices

22 February 2016
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
ArXivPDFHTML

Papers citing "Preconditioning Kernel Matrices"

15 / 15 papers shown
Title
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
30
3
0
04 Oct 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
32
0
0
27 May 2024
A Preconditioned Interior Point Method for Support Vector Machines Using
  an ANOVA-Decomposition and NFFT-Based Matrix-Vector Products
A Preconditioned Interior Point Method for Support Vector Machines Using an ANOVA-Decomposition and NFFT-Based Matrix-Vector Products
Theresa Wagner
John W. Pearson
Martin Stoll
27
4
0
01 Dec 2023
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
22
3
0
22 Feb 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
13
10
0
31 Dec 2021
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
40
23
0
13 Oct 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
J. Gardner
12
23
0
01 Jul 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
15
8
0
28 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
16
18
0
16 Feb 2021
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
17
43
0
19 Jun 2020
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
Bayesian Inference of Log Determinants
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
26
18
0
05 Apr 2017
Diving into the shallows: a computational perspective on large-scale
  shallow learning
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
16
75
0
30 Mar 2017
Faster Kernel Ridge Regression Using Sketching and Preconditioning
Faster Kernel Ridge Regression Using Sketching and Preconditioning
H. Avron
K. Clarkson
David P. Woodruff
25
121
0
10 Nov 2016
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
1