Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06693
Cited By
Preconditioning Kernel Matrices
22 February 2016
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preconditioning Kernel Matrices"
15 / 15 papers shown
Title
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
30
3
0
04 Oct 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
32
0
0
27 May 2024
A Preconditioned Interior Point Method for Support Vector Machines Using an ANOVA-Decomposition and NFFT-Based Matrix-Vector Products
Theresa Wagner
John W. Pearson
Martin Stoll
27
4
0
01 Dec 2023
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
22
3
0
22 Feb 2022
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
13
10
0
31 Dec 2021
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
40
23
0
13 Oct 2021
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
J. Gardner
12
23
0
01 Jul 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
15
8
0
28 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
16
18
0
16 Feb 2021
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
17
43
0
19 Jun 2020
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
26
18
0
05 Apr 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
16
75
0
30 Mar 2017
Faster Kernel Ridge Regression Using Sketching and Preconditioning
H. Avron
K. Clarkson
David P. Woodruff
25
121
0
10 Nov 2016
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
1