Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06664
Cited By
A Geometric Analysis of Phase Retrieval
22 February 2016
Ju Sun
Qing Qu
John N. Wright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Geometric Analysis of Phase Retrieval"
50 / 79 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
13
0
06 Jun 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
33
8
0
26 Jun 2023
Gradient descent in matrix factorization: Understanding large initialization
Hengchao Chen
Xin Chen
Mohamad Elmasri
Qiang Sun
AI4CE
31
1
0
30 May 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
42
33
0
18 May 2023
Poisson-Gaussian Holographic Phase Retrieval with Score-based Image Prior
Zongyu Li
Jason Hu
Xiaojian Xu
Liyue Shen
Jeffrey A. Fessler
DiffM
24
3
0
12 May 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Provable Phase Retrieval with Mirror Descent
Jean-Jacques-Narcisse Godeme
M. Fadili
Xavier Buet
M. Zerrad
M. Lequime
C. Amra
23
4
0
17 Oct 2022
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
46
4
0
11 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
59
52
0
12 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
27
10
0
24 Aug 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
59
23
0
07 Jun 2022
Subspace Phase Retrieval
Meng Xu
Dekuan Dong
J. Wang
19
2
0
06 Jun 2022
Randomly Initialized Alternating Least Squares: Fast Convergence for Matrix Sensing
Kiryung Lee
Dominik Stöger
31
11
0
25 Apr 2022
Signal Recovery with Non-Expansive Generative Network Priors
Jorio Cocola
21
1
0
24 Apr 2022
Sharper Utility Bounds for Differentially Private Models
Yilin Kang
Yong Liu
Jian Li
Weiping Wang
FedML
32
3
0
22 Apr 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
30
99
0
02 Mar 2022
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
31
15
0
28 Nov 2021
A first-order primal-dual method with adaptivity to local smoothness
Maria-Luiza Vladarean
Yura Malitsky
V. Cevher
13
15
0
28 Oct 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
57
40
0
07 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
33
9
0
03 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
22
4
0
21 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
87
53
0
24 Jun 2020
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
13
23
0
15 Jun 2020
Phase retrieval in high dimensions: Statistical and computational phase transitions
Antoine Maillard
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
26
57
0
09 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
115
0
18 May 2020
Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model
Z. Fan
Yi Sun
Tianhao Wang
Yihong Wu
30
18
0
31 Mar 2020
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
72
15
0
20 Mar 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
17
5
0
27 Feb 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
25
83
0
22 Feb 2020
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
24
5
0
04 Feb 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
20
9
0
05 Dec 2019
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
30
26
0
25 Nov 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation
Harshat Kumar
Alec Koppel
Alejandro Ribeiro
104
79
0
18 Oct 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
17
29
0
28 Aug 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
32
3
0
21 Jan 2019
On the Global Convergence of Imitation Learning: A Case for Linear Quadratic Regulator
Qi Cai
Mingyi Hong
Yongxin Chen
Zhaoran Wang
24
34
0
11 Jan 2019
On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution
Yuqian Zhang
Yenson Lau
Han-Wen Kuo
S. Cheung
A. Pasupathy
John N. Wright
24
49
0
07 Jan 2019
1
2
Next