Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.05629
Cited By
Communication-Efficient Learning of Deep Networks from Decentralized Data
17 February 2016
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Communication-Efficient Learning of Deep Networks from Decentralized Data"
50 / 2,802 papers shown
Title
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
32
98
0
10 Sep 2018
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Guangxu Zhu
Dongzhu Liu
Yuqing Du
Changsheng You
Jun Zhang
Kaibin Huang
20
505
0
02 Sep 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
38
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
80
429
0
22 Aug 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
31
171
0
20 Aug 2018
Mitigating Sybils in Federated Learning Poisoning
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
AAML
15
498
0
14 Aug 2018
COLA: Decentralized Linear Learning
Lie He
An Bian
Martin Jaggi
53
118
0
13 Aug 2018
Quantized Densely Connected U-Nets for Efficient Landmark Localization
Zhiqiang Tang
Xi Peng
Shijie Geng
Lingfei Wu
Shaoting Zhang
Dimitris N. Metaxas
3DV
19
143
0
07 Aug 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
38
39
0
11 Jul 2018
Efficient Decentralized Deep Learning by Dynamic Model Averaging
Michael Kamp
Linara Adilova
Joachim Sicking
Fabian Hüger
Peter Schlicht
Tim Wirtz
Stefan Wrobel
37
129
0
09 Jul 2018
Blockchain as a Service: A Decentralized and Secure Computing Paradigm
G. Mendis
Yifu Wu
Jin Wei
Moein Sabounchi
Rigoberto Roche'
32
21
0
05 Jul 2018
Confidential Inference via Ternary Model Partitioning
Zhongshu Gu
Heqing Huang
Jialong Zhang
D. Su
Hani Jamjoom
Ankita Lamba
Dimitrios E. Pendarakis
Ian Molloy
60
53
0
03 Jul 2018
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
96
2,537
0
02 Jun 2018
Robustifying Models Against Adversarial Attacks by Langevin Dynamics
Vignesh Srinivasan
Arturo Marbán
K. Müller
Wojciech Samek
Shinichi Nakajima
AAML
38
9
0
30 May 2018
Compact and Computationally Efficient Representation of Deep Neural Networks
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
42
68
0
27 May 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
47
489
0
27 May 2018
Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization
Blake E. Woodworth
Jialei Wang
Adam D. Smith
H. B. McMahan
Nathan Srebro
35
123
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
36
298
0
25 May 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
118
1,050
0
24 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
36
212
0
22 May 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
369
37
0
15 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
98
1,458
0
10 May 2018
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
Lili Su
Jiaming Xu
FedML
163
35
0
26 Apr 2018
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
Takayuki Nishio
Ryo Yonetani
FedML
78
1,380
0
23 Apr 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
149
1,692
0
14 Apr 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
73
1,308
0
12 Mar 2018
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD
Sanghamitra Dutta
Gauri Joshi
Soumyadip Ghosh
Parijat Dube
P. Nagpurkar
34
194
0
03 Mar 2018
Generalized Byzantine-tolerant SGD
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
AAML
34
256
0
27 Feb 2018
Geometric Lower Bounds for Distributed Parameter Estimation under Communication Constraints
Yanjun Han
Ayfer Özgür
Tsachy Weissman
45
91
0
23 Feb 2018
Federated Meta-Learning with Fast Convergence and Efficient Communication
Fei Chen
Mi Luo
Zhenhua Dong
Zhenguo Li
Xiuqiang He
FedML
34
390
0
22 Feb 2018
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
51
70
0
21 Feb 2018
A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets
Fabian Schuiki
Michael Schaffner
Frank K. Gürkaynak
Luca Benini
34
70
0
19 Feb 2018
RoboChain: A Secure Data-Sharing Framework for Human-Robot Interaction
Eduardo Castelló Ferrer
Ognjen Rudovic
Thomas Hardjono
Alex Pentland
29
62
0
13 Feb 2018
Distributed One-class Learning
Ali Shahin Shamsabadi
Hamed Haddadi
Andrea Cavallaro
PICV
16
10
0
10 Feb 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
62
1,283
0
20 Dec 2017
A Berkeley View of Systems Challenges for AI
Ion Stoica
D. Song
Raluca A. Popa
D. Patterson
Michael W. Mahoney
...
Joseph E. Gonzalez
Ken Goldberg
A. Ghodsi
David Culler
Pieter Abbeel
38
199
0
15 Dec 2017
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
79
1,391
0
05 Dec 2017
Together or Alone: The Price of Privacy in Collaborative Learning
Balázs Pejó
Qiang Tang
G. Biczók
FedML
32
16
0
01 Dec 2017
Random gradient extrapolation for distributed and stochastic optimization
Guanghui Lan
Yi Zhou
22
52
0
15 Nov 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
41
127
0
11 Sep 2017
Collaborative Deep Learning in Fixed Topology Networks
Zhanhong Jiang
Aditya Balu
Chinmay Hegde
Soumik Sarkar
FedML
42
180
0
23 Jun 2017
Stochastic Training of Neural Networks via Successive Convex Approximations
Simone Scardapane
Paolo Di Lorenzo
31
9
0
15 Jun 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
28
1,784
0
30 May 2017
Continual Learning in Generative Adversarial Nets
Ari Seff
Alex Beatson
Daniel Suo
Han Liu
GAN
19
132
0
23 May 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
50
101
0
22 Nov 2016
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
55
361
0
02 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
233
4,608
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
78
1,880
0
08 Oct 2016
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
41
56
0
30 Mar 2016
Scalable and Sustainable Deep Learning via Randomized Hashing
Ryan Spring
Anshumali Shrivastava
37
132
0
26 Feb 2016
Previous
1
2
3
...
55
56
57
Next