ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05310
  4. Cited By
Large Scale Kernel Learning using Block Coordinate Descent

Large Scale Kernel Learning using Block Coordinate Descent

17 February 2016
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
ArXiv (abs)PDFHTML

Papers citing "Large Scale Kernel Learning using Block Coordinate Descent"

16 / 16 papers shown
Title
Joker: Joint Optimization Framework for Lightweight Kernel Machines
Joker: Joint Optimization Framework for Lightweight Kernel Machines
Junhong Zhang
Zhihui Lai
48
0
0
23 May 2025
Supervised Kernel Thinning
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
155
0
0
17 Oct 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
69
3
0
28 May 2024
Less is More: Nyström Computational Regularization
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
43
277
0
16 Jul 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
99
177
0
12 Feb 2015
An Introduction to Matrix Concentration Inequalities
An Introduction to Matrix Concentration Inequalities
J. Tropp
168
1,154
0
07 Jan 2015
Fast Randomized Kernel Methods With Statistical Guarantees
Fast Randomized Kernel Methods With Statistical Guarantees
A. Alaoui
Michael W. Mahoney
85
90
0
02 Nov 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
91
353
0
04 Sep 2014
Distributed Coordinate Descent Method for Learning with Big Data
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
184
255
0
08 Oct 2013
Least Squares Revisited: Scalable Approaches for Multi-class Prediction
Least Squares Revisited: Scalable Approaches for Multi-class Prediction
Alekh Agarwal
Sham Kakade
Nikos Karampatziakis
Le Song
Gregory Valiant
95
29
0
07 Oct 2013
Revisiting the Nystrom Method for Improved Large-Scale Machine Learning
Revisiting the Nystrom Method for Improved Large-Scale Machine Learning
Alex Gittens
Michael W. Mahoney
118
415
0
07 Mar 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
184
1,033
0
10 Sep 2012
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
161
282
0
09 Aug 2012
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
198
2,273
0
28 Jun 2011
Distributed Delayed Stochastic Optimization
Distributed Delayed Stochastic Optimization
Alekh Agarwal
John C. Duchi
125
627
0
28 Apr 2011
Feature Hashing for Large Scale Multitask Learning
Feature Hashing for Large Scale Multitask Learning
Kilian Q. Weinberger
A. Dasgupta
Josh Attenberg
John Langford
Alex Smola
119
1,023
0
12 Feb 2009
1