Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.05023
Cited By
An introduction to sampling via measure transport
16 February 2016
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An introduction to sampling via measure transport"
16 / 16 papers shown
Title
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
M. Girolami
Andrew M. Stuart
A. Vadeboncoeur
36
1
0
28 May 2024
Semi-supervised Learning of Pushforwards For Domain Translation & Adaptation
N. Panda
Natalie Klein
Dominic Yang
P. Gasda
Diane Oyen
22
1
0
18 Apr 2023
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
40
6
0
15 Jun 2022
An Optimal Transport Formulation of Bayes' Law for Nonlinear Filtering Algorithms
Amirhossein Taghvaei
Bamdad Hosseini
OT
22
17
0
22 Mar 2022
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
20
17
0
31 Dec 2021
Operator Shifting for General Noisy Matrix Systems
Philip A. Etter
Lexing Ying
19
1
0
22 Apr 2021
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
22
14
0
14 Nov 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
21
14
0
07 Oct 2020
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
18
33
0
14 Jul 2020
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
16
103
0
09 Mar 2019
Kernel embedded nonlinear observational mappings in the variational mapping particle filter
M. Pulido
P. Leeuwen
D. Posselt
13
7
0
29 Jan 2019
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
15
29
0
28 May 2018
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,067
0
16 Aug 2016
Sequential Bayesian optimal experimental design via approximate dynamic programming
Xun Huan
Youssef M. Marzouk
27
66
0
28 Apr 2016
Iterative Gaussianization: from ICA to Random Rotations
Valero Laparra
Gustavo Camps-Valls
Jesús Malo
59
125
0
31 Jan 2016
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
1