ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05023
  4. Cited By
An introduction to sampling via measure transport

An introduction to sampling via measure transport

16 February 2016
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
    OT
ArXivPDFHTML

Papers citing "An introduction to sampling via measure transport"

16 / 16 papers shown
Title
Efficient Prior Calibration From Indirect Data
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
M. Girolami
Andrew M. Stuart
A. Vadeboncoeur
36
1
0
28 May 2024
Semi-supervised Learning of Pushforwards For Domain Translation &
  Adaptation
Semi-supervised Learning of Pushforwards For Domain Translation & Adaptation
N. Panda
Natalie Klein
Dominic Yang
P. Gasda
Diane Oyen
22
1
0
18 Apr 2023
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
40
6
0
15 Jun 2022
An Optimal Transport Formulation of Bayes' Law for Nonlinear Filtering
  Algorithms
An Optimal Transport Formulation of Bayes' Law for Nonlinear Filtering Algorithms
Amirhossein Taghvaei
Bamdad Hosseini
OT
22
17
0
22 Mar 2022
Triangular Flows for Generative Modeling: Statistical Consistency,
  Smoothness Classes, and Fast Rates
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
20
17
0
31 Dec 2021
Operator Shifting for General Noisy Matrix Systems
Operator Shifting for General Noisy Matrix Systems
Philip A. Etter
Lexing Ying
19
1
0
22 Apr 2021
Self Normalizing Flows
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
22
14
0
14 Nov 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
21
14
0
07 Oct 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
18
33
0
14 Jul 2020
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
16
103
0
09 Mar 2019
Kernel embedded nonlinear observational mappings in the variational
  mapping particle filter
Kernel embedded nonlinear observational mappings in the variational mapping particle filter
M. Pulido
P. Leeuwen
D. Posselt
13
7
0
29 Jan 2019
Bayesian Learning with Wasserstein Barycenters
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
15
29
0
28 May 2018
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,067
0
16 Aug 2016
Sequential Bayesian optimal experimental design via approximate dynamic
  programming
Sequential Bayesian optimal experimental design via approximate dynamic programming
Xun Huan
Youssef M. Marzouk
27
66
0
28 Apr 2016
Iterative Gaussianization: from ICA to Random Rotations
Iterative Gaussianization: from ICA to Random Rotations
Valero Laparra
Gustavo Camps-Valls
Jesús Malo
59
125
0
31 Jan 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
1