ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04915
  4. Cited By
Gradient Descent Converges to Minimizers

Gradient Descent Converges to Minimizers

16 February 2016
J. Lee
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ArXivPDFHTML

Papers citing "Gradient Descent Converges to Minimizers"

43 / 43 papers shown
Title
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
34
0
0
28 Jan 2025
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
45
0
0
08 Feb 2024
Offline Policy Evaluation and Optimization under Confounding
Offline Policy Evaluation and Optimization under Confounding
Chinmaya Kausik
Yangyi Lu
Kevin Tan
Maggie Makar
Yixin Wang
Ambuj Tewari
OffRL
23
8
0
29 Nov 2022
Stochastic noise can be helpful for variational quantum algorithms
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
24
34
0
13 Oct 2022
CoShNet: A Hybrid Complex Valued Neural Network using Shearlets
CoShNet: A Hybrid Complex Valued Neural Network using Shearlets
Manny Ko
Ujjawal K. Panchal
Héctor Andrade-Loarca
Andres Mendez-Vazquez
27
1
0
14 Aug 2022
Optimal Rate Adaption in Federated Learning with Compressed
  Communications
Optimal Rate Adaption in Federated Learning with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Jiangchuan Liu
FedML
42
38
0
13 Dec 2021
A Survey on Fault-tolerance in Distributed Optimization and Machine
  Learning
A Survey on Fault-tolerance in Distributed Optimization and Machine Learning
Shuo Liu
AI4CE
OOD
50
13
0
16 Jun 2021
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
19
178
0
01 Sep 2020
Learning from Sparse Demonstrations
Learning from Sparse Demonstrations
Wanxin Jin
Todd D. Murphey
Dana Kulić
Neta Ezer
Shaoshuai Mou
19
35
0
05 Aug 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges
  and How to Overcome Them
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Implicit Geometric Regularization for Learning Shapes
Implicit Geometric Regularization for Learning Shapes
Amos Gropp
Lior Yariv
Niv Haim
Matan Atzmon
Y. Lipman
AI4CE
45
852
0
24 Feb 2020
Depth Descent Synchronization in $\mathrm{SO}(D)$
Depth Descent Synchronization in SO(D)\mathrm{SO}(D)SO(D)
Tyler Maunu
Gilad Lerman
MDE
34
2
0
13 Feb 2020
On the Sample Complexity and Optimization Landscape for Quadratic
  Feasibility Problems
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
21
5
0
04 Feb 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating
  Decreasing Paths to Infinity
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Shadowing Properties of Optimization Algorithms
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
30
18
0
12 Nov 2019
Weight-space symmetry in deep networks gives rise to permutation
  saddles, connected by equal-loss valleys across the loss landscape
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
23
55
0
05 Jul 2019
Combining Stochastic Adaptive Cubic Regularization with Negative
  Curvature for Nonconvex Optimization
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
21
15
0
27 Jun 2019
Differentiable Game Mechanics
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
37
79
0
13 May 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
26
3
0
21 Jan 2019
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural
  Networks
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks
Mouloud Belbahri
Eyyub Sari
Sajad Darabi
V. Nia
MQ
21
1
0
18 Jan 2019
Gradient descent aligns the layers of deep linear networks
Gradient descent aligns the layers of deep linear networks
Ziwei Ji
Matus Telgarsky
14
248
0
04 Oct 2018
On the Implicit Bias of Dropout
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
27
66
0
26 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
29
97
0
14 Jun 2018
Local Saddle Point Optimization: A Curvature Exploitation Approach
Local Saddle Point Optimization: A Curvature Exploitation Approach
Leonard Adolphs
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
26
107
0
15 May 2018
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
Marco Baity-Jesi
Levent Sagun
Mario Geiger
S. Spigler
Gerard Ben Arous
C. Cammarota
Yann LeCun
M. Wyart
Giulio Biroli
AI4CE
33
113
0
19 Mar 2018
Escaping Saddles with Stochastic Gradients
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
19
161
0
15 Mar 2018
The Mechanics of n-Player Differentiable Games
The Mechanics of n-Player Differentiable Games
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
MLT
16
273
0
15 Feb 2018
Improving Generalization Performance by Switching from Adam to SGD
Improving Generalization Performance by Switching from Adam to SGD
N. Keskar
R. Socher
ODL
29
520
0
20 Dec 2017
Theoretical insights into the optimization landscape of
  over-parameterized shallow neural networks
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
36
415
0
16 Jul 2017
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Alon Gonen
Shai Shalev-Shwartz
33
29
0
16 Jan 2017
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex
  Matrix Factorization
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization
Xingguo Li
Junwei Lu
R. Arora
Jarvis Haupt
Han Liu
Zhaoran Wang
T. Zhao
37
52
0
29 Dec 2016
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Levent Sagun
Léon Bottou
Yann LeCun
UQCV
29
226
0
22 Nov 2016
Topology and Geometry of Half-Rectified Network Optimization
Topology and Geometry of Half-Rectified Network Optimization
C. Freeman
Joan Bruna
19
233
0
04 Nov 2016
Asynchronous Stochastic Gradient Descent with Delay Compensation
Asynchronous Stochastic Gradient Descent with Delay Compensation
Shuxin Zheng
Qi Meng
Taifeng Wang
Wei Chen
Nenghai Yu
Zhiming Ma
Tie-Yan Liu
21
311
0
27 Sep 2016
Stochastic Heavy Ball
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
15
103
0
14 Sep 2016
Non-square matrix sensing without spurious local minima via the
  Burer-Monteiro approach
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
C. Caramanis
Sujay Sanghavi
17
179
0
12 Sep 2016
Local Maxima in the Likelihood of Gaussian Mixture Models: Structural
  Results and Algorithmic Consequences
Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences
Chi Jin
Yuchen Zhang
Sivaraman Balakrishnan
Martin J. Wainwright
Michael I. Jordan
32
131
0
04 Sep 2016
Provable Efficient Online Matrix Completion via Non-convex Stochastic
  Gradient Descent
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin
Sham Kakade
Praneeth Netrapalli
13
81
0
26 May 2016
No bad local minima: Data independent training error guarantees for
  multilayer neural networks
No bad local minima: Data independent training error guarantees for multilayer neural networks
Daniel Soudry
Y. Carmon
19
235
0
26 May 2016
Matrix Completion has No Spurious Local Minimum
Matrix Completion has No Spurious Local Minimum
Rong Ge
J. Lee
Tengyu Ma
13
596
0
24 May 2016
On the Powerball Method for Optimization
On the Powerball Method for Optimization
Ye Yuan
Mu Li
Jun Liu
Claire Tomlin
16
20
0
24 Mar 2016
When Are Nonconvex Problems Not Scary?
When Are Nonconvex Problems Not Scary?
Ju Sun
Qing Qu
John N. Wright
21
166
0
21 Oct 2015
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1