ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04621
  4. Cited By
Deep Exploration via Bootstrapped DQN

Deep Exploration via Bootstrapped DQN

15 February 2016
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
ArXivPDFHTML

Papers citing "Deep Exploration via Bootstrapped DQN"

50 / 288 papers shown
Title
Rescue Conversations from Dead-ends: Efficient Exploration for
  Task-oriented Dialogue Policy Optimization
Rescue Conversations from Dead-ends: Efficient Exploration for Task-oriented Dialogue Policy Optimization
Yangyang Zhao
Zhenyu Wang
Mehdi Dastani
Shihan Wang
24
0
0
05 May 2023
Graph Exploration for Effective Multi-agent Q-Learning
Graph Exploration for Effective Multi-agent Q-Learning
Ainur Zhaikhan
Ali H. Sayed
42
1
0
19 Apr 2023
Fast exploration and learning of latent graphs with aliased observations
Fast exploration and learning of latent graphs with aliased observations
Miguel Lazaro-Gredilla
Ishani Deshpande
Siva K. Swaminathan
Meet Dave
Dileep George
33
3
0
13 Mar 2023
Model-Based Uncertainty in Value Functions
Model-Based Uncertainty in Value Functions
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
38
14
0
24 Feb 2023
Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition
Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition
Elliot Fosong
Arrasy Rahman
Ignacio Carlucho
Stefano V. Albrecht
35
5
0
09 Feb 2023
Learning How to Infer Partial MDPs for In-Context Adaptation and
  Exploration
Learning How to Infer Partial MDPs for In-Context Adaptation and Exploration
Chentian Jiang
Nan Rosemary Ke
Hado van Hasselt
16
3
0
08 Feb 2023
Investigating the role of model-based learning in exploration and
  transfer
Investigating the role of model-based learning in exploration and transfer
Jacob Walker
Eszter Vértes
Yazhe Li
Gabriel Dulac-Arnold
Ankesh Anand
T. Weber
Jessica B. Hamrick
OffRL
36
7
0
08 Feb 2023
Diversity Through Exclusion (DTE): Niche Identification for
  Reinforcement Learning through Value-Decomposition
Diversity Through Exclusion (DTE): Niche Identification for Reinforcement Learning through Value-Decomposition
P. Sunehag
A. Vezhnevets
Edgar A. Duénez-Guzmán
Igor Mordach
Joel Z. Leibo
26
2
0
02 Feb 2023
Risk-Averse Model Uncertainty for Distributionally Robust Safe
  Reinforcement Learning
Risk-Averse Model Uncertainty for Distributionally Robust Safe Reinforcement Learning
James Queeney
M. Benosman
OOD
OffRL
43
5
0
30 Jan 2023
Sample Efficient Deep Reinforcement Learning via Local Planning
Sample Efficient Deep Reinforcement Learning via Local Planning
Dong Yin
S. Thiagarajan
N. Lazić
Nived Rajaraman
Botao Hao
Csaba Szepesvári
30
4
0
29 Jan 2023
Near-optimal Policy Identification in Active Reinforcement Learning
Near-optimal Policy Identification in Active Reinforcement Learning
Xiang Li
Viraj Mehta
Johannes Kirschner
I. Char
Willie Neiswanger
J. Schneider
Andreas Krause
Ilija Bogunovic
OffRL
48
6
0
19 Dec 2022
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
30
14
0
18 Dec 2022
Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch
  Size
Q-Ensemble for Offline RL: Don't Scale the Ensemble, Scale the Batch Size
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Dmitry Akimov
Sergey Kolesnikov
OffRL
41
14
0
20 Nov 2022
Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments
Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments
Daniel Jarrett
Corentin Tallec
Florent Altché
Thomas Mesnard
Rémi Munos
Michal Valko
50
5
0
18 Nov 2022
Offline Reinforcement Learning with Adaptive Behavior Regularization
Offline Reinforcement Learning with Adaptive Behavior Regularization
Yunfan Zhou
Xijun Li
Qingyu Qu
OffRL
27
1
0
15 Nov 2022
Controlling Commercial Cooling Systems Using Reinforcement Learning
Controlling Commercial Cooling Systems Using Reinforcement Learning
Jerry Luo
Cosmin Paduraru
Octavian Voicu
Yuri Chervonyi
Scott A. Munns
...
Sims Witherspoon
D. Parish
Peter Dolan
Chenyu Zhao
D. Mankowitz
OffRL
AI4CE
28
25
0
11 Nov 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
  Learning
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
31
4
0
30 Oct 2022
Planning to the Information Horizon of BAMDPs via Epistemic State
  Abstraction
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam
Satinder Singh
32
3
0
30 Oct 2022
Uncertainty-based Meta-Reinforcement Learning for Robust Radar Tracking
Uncertainty-based Meta-Reinforcement Learning for Robust Radar Tracking
Julius Ott
Lorenzo Servadei
Gianfranco Mauro
Thomas Stadelmayer
Avik Santra
Robert Wille
OOD
UQCV
39
3
0
26 Oct 2022
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
  Reinforcement Learning
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforcement Learning
Yi Zhao
Rinu Boney
Alexander Ilin
Arno Solin
Joni Pajarinen
OffRL
OnRL
28
39
0
25 Oct 2022
Local Connection Reinforcement Learning Method for Efficient Control of
  Robotic Peg-in-Hole Assembly
Local Connection Reinforcement Learning Method for Efficient Control of Robotic Peg-in-Hole Assembly
Yuhang Gai
Jiwen Zhang
Dan Wu
Ken Chen
OffRL
32
1
0
24 Oct 2022
Solving Continuous Control via Q-learning
Solving Continuous Control via Q-learning
Tim Seyde
Peter Werner
Wilko Schwarting
Igor Gilitschenski
Martin Riedmiller
Daniela Rus
Markus Wulfmeier
OffRL
LRM
39
22
0
22 Oct 2022
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
Haotian Fu
Shangqun Yu
Michael Littman
George Konidaris
BDL
OffRL
26
12
0
20 Oct 2022
Deep Active Ensemble Sampling For Image Classification
Deep Active Ensemble Sampling For Image Classification
S. Mohamadi
Gianfranco Doretto
Donald Adjeroh
UQCV
21
9
0
11 Oct 2022
How to Enable Uncertainty Estimation in Proximal Policy Optimization
How to Enable Uncertainty Estimation in Proximal Policy Optimization
Eugene Bykovets
Yannick Metz
Mennatallah El-Assady
Daniel A. Keim
J. M. Buhmann
UQCV
16
1
0
07 Oct 2022
Exploration via Planning for Information about the Optimal Trajectory
Exploration via Planning for Information about the Optimal Trajectory
Viraj Mehta
I. Char
J. Abbate
R. Conlin
M. Boyer
Stefano Ermon
J. Schneider
Willie Neiswanger
OffRL
29
6
0
06 Oct 2022
Query The Agent: Improving sample efficiency through epistemic
  uncertainty estimation
Query The Agent: Improving sample efficiency through epistemic uncertainty estimation
Julian Alverio
Boris Katz
Andrei Barbu
40
0
0
05 Oct 2022
Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
  Multi-Step Approach for Policy Training
Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical Multi-Step Approach for Policy Training
Gang Chen
Victoria Huang
OffRL
45
0
0
29 Sep 2022
MAN: Multi-Action Networks Learning
MAN: Multi-Action Networks Learning
Keqin Wang
Alison Bartsch
A. Farimani
21
3
0
19 Sep 2022
Reducing Variance in Temporal-Difference Value Estimation via Ensemble
  of Deep Networks
Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks
Litian Liang
Yaosheng Xu
Stephen Marcus McAleer
Dailin Hu
Alexander Ihler
Pieter Abbeel
Roy Fox
OOD
29
16
0
16 Sep 2022
A Provably Efficient Model-Free Posterior Sampling Method for Episodic
  Reinforcement Learning
A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning
Christoph Dann
M. Mohri
Tong Zhang
Julian Zimmert
OffRL
23
33
0
23 Aug 2022
Entropy Enhanced Multi-Agent Coordination Based on Hierarchical Graph
  Learning for Continuous Action Space
Entropy Enhanced Multi-Agent Coordination Based on Hierarchical Graph Learning for Continuous Action Space
Yining Chen
Ke Wang
Guang-hua Song
Xiaohong Jiang
28
3
0
23 Aug 2022
Towards Understanding How Machines Can Learn Causal Overhypotheses
Towards Understanding How Machines Can Learn Causal Overhypotheses
Eliza Kosoy
David M. Chan
Adrian Liu
Jasmine Collins
Bryanna Kaufmann
Sandy Han Huang
Jessica B. Hamrick
John F. Canny
Nan Rosemary Ke
Alison Gopnik
CML
AI4CE
30
18
0
16 Jun 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions
  and Sample Complexity
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
50
22
0
15 Jun 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
32
18
0
08 Jun 2022
Reward Uncertainty for Exploration in Preference-based Reinforcement
  Learning
Reward Uncertainty for Exploration in Preference-based Reinforcement Learning
Xinran Liang
Katherine Shu
Kimin Lee
Pieter Abbeel
23
58
0
24 May 2022
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
D. Tiapkin
Denis Belomestny
Eric Moulines
A. Naumov
S. Samsonov
Yunhao Tang
Michal Valko
Pierre Menard
34
17
0
16 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
24
19
0
04 May 2022
Exploration in Deep Reinforcement Learning: A Survey
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
31
324
0
02 May 2022
Curiosity Driven Self-supervised Tactile Exploration of Unknown Objects
Curiosity Driven Self-supervised Tactile Exploration of Unknown Objects
Yujie Lu
Jianren Wang
Vikash Kumar
31
4
0
31 Mar 2022
Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered Environments
  with Distributional Reinforcement Learning
Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered Environments with Distributional Reinforcement Learning
Cheng Liu
E. Kampen
Guido de Croon
39
16
0
28 Mar 2022
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
K. Graczyk
J. Pawlowski
Sylwia Majchrowska
Tomasz Golan
28
9
0
15 Mar 2022
ReVar: Strengthening Policy Evaluation via Reduced Variance Sampling
ReVar: Strengthening Policy Evaluation via Reduced Variance Sampling
Subhojyoti Mukherjee
Josiah P. Hanna
Robert D. Nowak
OffRL
29
12
0
09 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
40
40
0
06 Mar 2022
An Analysis of Ensemble Sampling
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
34
21
0
02 Mar 2022
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement
  Learning
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Zhuoran Yang
Zhihong Deng
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
45
132
0
23 Feb 2022
Reinforcement Learning in Practice: Opportunities and Challenges
Reinforcement Learning in Practice: Opportunities and Challenges
Yuxi Li
OffRL
38
9
0
23 Feb 2022
Learning Causal Overhypotheses through Exploration in Children and
  Computational Models
Learning Causal Overhypotheses through Exploration in Children and Computational Models
Eliza Kosoy
Adrian Liu
Jasmine Collins
David M. Chan
Jessica B. Hamrick
Nan Rosemary Ke
Sandy H Huang
Bryanna Kaufmann
John F. Canny
Alison Gopnik
CML
24
9
0
21 Feb 2022
L2C2: Locally Lipschitz Continuous Constraint towards Stable and Smooth
  Reinforcement Learning
L2C2: Locally Lipschitz Continuous Constraint towards Stable and Smooth Reinforcement Learning
Taisuke Kobayashi
31
15
0
15 Feb 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error:
  An Enhanced Bayesian Upper Confidence Bound Framework
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
Henry Lam
A. Meisami
Haofeng Zhang
38
4
0
31 Jan 2022
Previous
123456
Next