Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.02658
Cited By
Graying the black box: Understanding DQNs
8 February 2016
Tom Zahavy
Nir Ben-Zrihem
Shie Mannor
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graying the black box: Understanding DQNs"
50 / 66 papers shown
Title
Behaviour Discovery and Attribution for Explainable Reinforcement Learning
Rishav Rishav
Somjit Nath
Vincent Michalski
Samira Ebrahimi Kahou
FAtt
OffRL
73
0
0
19 Mar 2025
Policy-to-Language: Train LLMs to Explain Decisions with Flow-Matching Generated Rewards
Xinyi Yang
Liang Zeng
Heng Dong
Chao Yu
X. Wu
H. Yang
Yu Wang
Milind Tambe
Tonghan Wang
83
2
0
18 Feb 2025
Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability
Wen-Dong Jiang
Chih-Yung Chang
Show-Jane Yen
Diptendu Sinha Roy
FAtt
HAI
90
1
0
02 Dec 2024
Revealing the Learning Process in Reinforcement Learning Agents Through Attention-Oriented Metrics
Charlotte Beylier
Simon M. Hofmann
Nico Scherf
26
0
0
20 Jun 2024
Learning Interpretable Models of Aircraft Handling Behaviour by Reinforcement Learning from Human Feedback
Tom Bewley
J. Lawry
Arthur G. Richards
32
1
0
26 May 2023
AutoDOViz: Human-Centered Automation for Decision Optimization
D. Weidele
S. Afzal
Abel N. Valente
Cole Makuch
Owen Cornec
...
Radu Marinescu
Paulito Palmes
Elizabeth M. Daly
Loraine Franke
D. Haehn
OffRL
50
4
0
19 Feb 2023
Which Experiences Are Influential for Your Agent? Policy Iteration with Turn-over Dropout
Takuya Hiraoka
Takashi Onishi
Yoshimasa Tsuruoka
OffRL
29
0
0
26 Jan 2023
Explainable Deep Reinforcement Learning: State of the Art and Challenges
G. Vouros
XAI
52
77
0
24 Jan 2023
Time-Efficient Reward Learning via Visually Assisted Cluster Ranking
David Zhang
Micah Carroll
Andreea Bobu
Anca Dragan
32
4
0
30 Nov 2022
Global and Local Analysis of Interestingness for Competency-Aware Deep Reinforcement Learning
Pedro Sequeira
Jesse Hostetler
Melinda Gervasio
18
0
0
11 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
24
7
0
06 Nov 2022
Reward Learning with Trees: Methods and Evaluation
Tom Bewley
J. Lawry
Arthur G. Richards
R. Craddock
Ian Henderson
31
1
0
03 Oct 2022
MIXRTs: Toward Interpretable Multi-Agent Reinforcement Learning via Mixing Recurrent Soft Decision Trees
Zichuan Liu
Zichuan Liu
Zhi Wang
Yuanyang Zhu
Chunlin Chen
66
5
0
15 Sep 2022
Explainability in reinforcement learning: perspective and position
Agneza Krajna
Mario Brčič
T. Lipić
Juraj Dončević
39
27
0
22 Mar 2022
Lazy-MDPs: Towards Interpretable Reinforcement Learning by Learning When to Act
Alexis Jacq
Johan Ferret
Olivier Pietquin
M. Geist
32
9
0
16 Mar 2022
A Survey of Explainable Reinforcement Learning
Stephanie Milani
Nicholay Topin
Manuela Veloso
Fei Fang
XAI
LRM
35
52
0
17 Feb 2022
Temporal-Spatial Causal Interpretations for Vision-Based Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Cheng Wu
34
9
0
06 Dec 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
60
0
20 Aug 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
Learning Symbolic Rules for Interpretable Deep Reinforcement Learning
Zhihao Ma
Yuzheng Zhuang
Paul Weng
Hankui Zhuo
Dong Li
Wulong Liu
Jianye Hao
NAI
51
14
0
15 Mar 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
53
170
0
13 Jan 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
35
63
0
18 Dec 2020
Demystifying Deep Neural Networks Through Interpretation: A Survey
Giang Dao
Minwoo Lee
FaML
FAtt
22
1
0
13 Dec 2020
Meta-trained agents implement Bayes-optimal agents
Vladimir Mikulik
Grégoire Delétang
Tom McGrath
Tim Genewein
Miljan Martic
Shane Legg
Pedro A. Ortega
OOD
FedML
37
41
0
21 Oct 2020
A Systematic Literature Review on the Use of Deep Learning in Software Engineering Research
Cody Watson
Nathan Cooper
David Nader-Palacio
Kevin Moran
Denys Poshyvanyk
26
111
0
14 Sep 2020
Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps
Tobias Huber
Katharina Weitz
Elisabeth André
Ofra Amir
FAtt
21
64
0
18 May 2020
Don't Explain without Verifying Veracity: An Evaluation of Explainable AI with Video Activity Recognition
Mahsan Nourani
Chiradeep Roy
Tahrima Rahman
Eric D. Ragan
Nicholas Ruozzi
Vibhav Gogate
AAML
15
17
0
05 May 2020
How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents
Richard Meyes
Moritz Schneider
Tobias Meisen
28
2
0
07 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
The Emerging Landscape of Explainable AI Planning and Decision Making
Tathagata Chakraborti
S. Sreedharan
S. Kambhampati
35
112
0
26 Feb 2020
How Transferable are the Representations Learned by Deep Q Agents?
Jacob Tyo
Zachary Chase Lipton
OffRL
19
6
0
24 Feb 2020
Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
Nikaash Puri
Sukriti Verma
Piyush B. Gupta
Dhruv Kayastha
Shripad Deshmukh
Balaji Krishnamurthy
Sameer Singh
FAtt
AAML
19
75
0
23 Dec 2019
Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents' Capabilities and Limitations
Pedro Sequeira
Melinda Gervasio
19
104
0
19 Dec 2019
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
30
90
0
09 Dec 2019
Faster and Safer Training by Embedding High-Level Knowledge into Deep Reinforcement Learning
Haodi Zhang
Zihang Gao
Yi Zhou
Haotong Zhang
Kaishun Wu
Fangzhen Lin
AI4CE
27
17
0
22 Oct 2019
Counterfactual States for Atari Agents via Generative Deep Learning
Matthew Lyle Olson
Lawrence Neal
Fuxin Li
Weng-Keen Wong
CML
21
29
0
27 Sep 2019
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
Theo Jaunet
Romain Vuillemot
Christian Wolf
HAI
18
36
0
06 Sep 2019
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents
Alex Mott
Daniel Zoran
Mike Chrzanowski
Daan Wierstra
Danilo Jimenez Rezende
26
188
0
06 Jun 2019
Generation of Policy-Level Explanations for Reinforcement Learning
Nicholay Topin
Manuela Veloso
32
74
0
28 May 2019
Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review
Benyamin Ghojogh
Maria N. Samad
Sayema Asif Mashhadi
Tania Kapoor
Wahab Ali
Fakhri Karray
Mark Crowley
26
89
0
07 May 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning
Qianwen Wang
Yao Ming
Zhihua Jin
Qiaomu Shen
Dongyu Liu
Micah J. Smith
K. Veeramachaneni
Huamin Qu
HAI
22
101
0
13 Feb 2019
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through Likelihood Matching
Tom Zahavy
Shie Mannor
HAI
36
30
0
24 Jan 2019
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
28
276
0
14 Dec 2018
Learning Finite State Representations of Recurrent Policy Networks
Anurag Koul
S. Greydanus
Alan Fern
19
88
0
29 Nov 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
38
102
0
28 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
34
397
0
19 Nov 2018
An initial attempt of combining visual selective attention with deep reinforcement learning
Liu Yuezhang
Ruohan Zhang
D. Ballard
32
20
0
11 Nov 2018
A Survey and Critique of Multiagent Deep Reinforcement Learning
Pablo Hernandez-Leal
Bilal Kartal
Matthew E. Taylor
OffRL
48
553
0
12 Oct 2018
1
2
Next