ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.07621
  4. Cited By
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment
  using Deep Neural Networks

Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks

28 January 2016
Evan Racah
Seyoon Ko
Peter Sadowski
W. Bhimji
C. Tull
Sang-Yun Oh
Pierre Baldi
P. Prabhat
ArXivPDFHTML

Papers citing "Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks"

5 / 5 papers shown
Title
Physics Community Needs, Tools, and Resources for Machine Learning
Physics Community Needs, Tools, and Resources for Machine Learning
Philip C. Harris
E. Katsavounidis
W. McCormack
D. Rankin
Yongbin Feng
...
De-huai Chen
Mark S. Neubauer
Javier Mauricio Duarte
G. Karagiorgi
Miaoyuan Liu
AI4CE
19
3
0
30 Mar 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
26
31
0
20 Jul 2018
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
1