Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.04738
Cited By
Sub-Sampled Newton Methods II: Local Convergence Rates
18 January 2016
Farbod Roosta-Khorasani
Michael W. Mahoney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sub-Sampled Newton Methods II: Local Convergence Rates"
16 / 16 papers shown
Title
SCORE: Approximating Curvature Information under Self-Concordant Regularization
Adeyemi Damilare Adeoye
Alberto Bemporad
20
4
0
14 Dec 2021
Iterative Teaching by Label Synthesis
Weiyang Liu
Zhen Liu
Hanchen Wang
Liam Paull
Bernhard Schölkopf
Adrian Weller
48
16
0
27 Oct 2021
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
A. Camuto
George Deligiannidis
Murat A. Erdogdu
Mert Gurbuzbalaban
Umut cSimcsekli
Lingjiong Zhu
33
29
0
09 Jun 2021
Constrained and Composite Optimization via Adaptive Sampling Methods
Yuchen Xie
Raghu Bollapragada
R. Byrd
J. Nocedal
19
14
0
31 Dec 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
37
9
0
07 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
38
20
0
25 Oct 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
29
15
0
27 Jun 2019
GPU Accelerated Sub-Sampled Newton's Method
Sudhir B. Kylasa
Farbod Roosta-Khorasani
Michael W. Mahoney
A. Grama
ODL
26
8
0
26 Feb 2018
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
32
15
0
28 Aug 2017
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
Frank E. Curtis
K. Scheinberg
39
45
0
30 Jun 2017
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
22
60
0
14 Mar 2017
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
23
176
0
27 Sep 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
42
3,172
0
15 Jun 2016
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
23
13
0
28 Nov 2015
1