ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.09327
  4. Cited By
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server

Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server

31 December 2015
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
    BDL
ArXivPDFHTML

Papers citing "Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server"

14 / 14 papers shown
Title
Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Andy Gray
Alma A. M. Rahat
Tom Crick
Stephen Lindsay
ELM
37
1
0
01 Mar 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Distributed data analytics
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
21
2
0
26 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
19
12
0
24 Feb 2022
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
181
411
0
14 Jul 2021
Model Fusion with Kullback--Leibler Divergence
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedML
MoMe
8
33
0
13 Jul 2020
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
13
37
0
23 May 2019
Improving GAN Training via Binarized Representation Entropy (BRE)
  Regularization
Improving GAN Training via Binarized Representation Entropy (BRE) Regularization
Yanshuai Cao
G. Ding
Kry Yik-Chau Lui
Ruitong Huang
GAN
16
19
0
09 May 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
19
32
0
26 Sep 2017
Warped Riemannian metrics for location-scale models
Warped Riemannian metrics for location-scale models
Salem Said
Lionel Bombrun
Y. Berthoumieu
25
15
0
22 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
81
36
0
01 Nov 2016
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard E. Turner
21
137
0
10 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1