ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.04860
  4. Cited By
Increasing the Action Gap: New Operators for Reinforcement Learning

Increasing the Action Gap: New Operators for Reinforcement Learning

15 December 2015
Marc G. Bellemare
Georg Ostrovski
A. Guez
Philip S. Thomas
Rémi Munos
ArXivPDFHTML

Papers citing "Increasing the Action Gap: New Operators for Reinforcement Learning"

6 / 6 papers shown
Title
Bellman operator convergence enhancements in reinforcement learning algorithms
Bellman operator convergence enhancements in reinforcement learning algorithms
David Krame Kadurha
Domini Jocema Leko Moutouo
Yae Ulrich Gaba
22
0
0
20 May 2025
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC
Tyler Clark
Mark Towers
Christine Evers
Jonathon Hare
OffRL
87
1
0
06 Nov 2024
Taming the Noise in Reinforcement Learning via Soft Updates
Taming the Noise in Reinforcement Learning via Soft Updates
Roy Fox
Ari Pakman
Naftali Tishby
33
336
0
28 Dec 2015
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
125
7,590
0
22 Sep 2015
Compress and Control
Compress and Control
J. Veness
Marc G. Bellemare
Marcus Hutter
Alvin Chua
Guillaume Desjardins
OffRL
41
29
0
19 Nov 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
70
2,992
0
19 Jul 2012
1