ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.04039
  4. Cited By
Distributed Optimization with Arbitrary Local Solvers

Distributed Optimization with Arbitrary Local Solvers

13 December 2015
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
ArXivPDFHTML

Papers citing "Distributed Optimization with Arbitrary Local Solvers"

44 / 44 papers shown
Title
Stochastic Channel-Based Federated Learning for Medical Data Privacy
  Preserving
Stochastic Channel-Based Federated Learning for Medical Data Privacy Preserving
Rulin Shao
Hongyu Hè
Hui Liu
Dianbo Liu
FedML
OOD
139
13
0
23 Oct 2019
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
47
151
0
24 Aug 2016
Distributed Inexact Damped Newton Method: Data Partitioning and
  Load-Balancing
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
47
10
0
16 Mar 2016
Primal-Dual Rates and Certificates
Primal-Dual Rates and Certificates
Celestine Mendler-Dünner
Simone Forte
Martin Takáč
Martin Jaggi
62
60
0
16 Feb 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
58
114
0
06 Feb 2016
L1-Regularized Distributed Optimization: A Communication-Efficient
  Primal-Dual Framework
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
117
28
0
13 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
97
733
0
11 Nov 2015
Stop Wasting My Gradients: Practical SVRG
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
55
134
0
05 Nov 2015
Partitioning Data on Features or Samples in Communication-Efficient
  Distributed Optimization?
Partitioning Data on Features or Samples in Communication-Efficient Distributed Optimization?
Chenxin Ma
Martin Takáč
78
11
0
22 Oct 2015
Distributed Mini-Batch SDCA
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
54
50
0
29 Jul 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
97
37
0
08 Jun 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex
  Losses
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
65
23
0
07 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
74
207
0
05 Jun 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
347
9,418
0
28 May 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
92
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
87
97
0
27 Feb 2015
SDCA without Duality
SDCA without Duality
Shai Shalev-Shwartz
46
47
0
22 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
86
176
0
12 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
69
99
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable
  Overapproximation
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
144
83
0
27 Dec 2014
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
50
130
0
27 Dec 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
67
353
0
04 Sep 2014
Finito: A Faster, Permutable Incremental Gradient Method for Big Data
  Problems
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems
Aaron Defazio
T. Caetano
Justin Domke
92
169
0
10 Jul 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
110
1,817
0
01 Jul 2014
LOCO: Distributing Ridge Regression with Random Projections
LOCO: Distributing Ridge Regression with Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
Gabriel Krummenacher
69
34
0
13 Jun 2014
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
Olivier Fercoq
Zheng Qu
Peter Richtárik
Martin Takáč
57
59
0
21 May 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
140
738
0
19 Mar 2014
A Stochastic Quasi-Newton Method for Large-Scale Optimization
A Stochastic Quasi-Newton Method for Large-Scale Optimization
R. Byrd
Samantha Hansen
J. Nocedal
Y. Singer
ODL
87
471
0
27 Jan 2014
Communication Efficient Distributed Optimization using an Approximate
  Newton-type Method
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
70
554
0
30 Dec 2013
Accelerated, Parallel and Proximal Coordinate Descent
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
64
372
0
20 Dec 2013
Semi-Stochastic Gradient Descent Methods
Semi-Stochastic Gradient Descent Methods
Jakub Konecný
Peter Richtárik
ODL
97
238
0
05 Dec 2013
Analysis of Distributed Stochastic Dual Coordinate Ascent
Analysis of Distributed Stochastic Dual Coordinate Ascent
Tianbao Yang
Shenghuo Zhu
Rong Jin
Yuanqing Lin
54
19
0
04 Dec 2013
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
104
551
0
21 Oct 2013
On Optimal Probabilities in Stochastic Coordinate Descent Methods
On Optimal Probabilities in Stochastic Coordinate Descent Methods
Peter Richtárik
Martin Takáč
65
131
0
13 Oct 2013
Distributed Coordinate Descent Method for Learning with Big Data
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
155
254
0
08 Oct 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
257
1,246
0
10 Sep 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized
  Loss Minimization
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
84
462
0
10 Sep 2013
Separable Approximations and Decomposition Methods for the Augmented
  Lagrangian
Separable Approximations and Decomposition Methods for the Augmented Lagrangian
R. Tappenden
Peter Richtárik
Burak Büke
44
41
0
30 Aug 2013
Inexact Coordinate Descent: Complexity and Preconditioning
Inexact Coordinate Descent: Complexity and Preconditioning
R. Tappenden
Peter Richtárik
J. Gondzio
62
100
0
19 Apr 2013
Mini-Batch Primal and Dual Methods for SVMs
Mini-Batch Primal and Dual Methods for SVMs
Martin Takáč
A. Bijral
Peter Richtárik
Nathan Srebro
57
195
0
10 Mar 2013
Parallel Coordinate Descent Methods for Big Data Optimization
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
94
487
0
04 Dec 2012
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
117
1,031
0
10 Sep 2012
Iteration Complexity of Randomized Block-Coordinate Descent Methods for
  Minimizing a Composite Function
Iteration Complexity of Randomized Block-Coordinate Descent Methods for Minimizing a Composite Function
Peter Richtárik
Martin Takáč
86
769
0
14 Jul 2011
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
146
2,272
0
28 Jun 2011
1